1,142 research outputs found

    Linear stability analysis of resonant periodic motions in the restricted three-body problem

    Full text link
    The equations of the restricted three-body problem describe the motion of a massless particle under the influence of two primaries of masses 1μ1-\mu and μ\mu, 0μ1/20\leq \mu \leq 1/2, that circle each other with period equal to 2π2\pi. When μ=0\mu=0, the problem admits orbits for the massless particle that are ellipses of eccentricity ee with the primary of mass 1 located at one of the focii. If the period is a rational multiple of 2π2\pi, denoted 2πp/q2\pi p/q, some of these orbits perturb to periodic motions for μ>0\mu > 0. For typical values of ee and p/qp/q, two resonant periodic motions are obtained for μ>0\mu > 0. We show that the characteristic multipliers of both these motions are given by expressions of the form 1±C(e,p,q)μ+O(μ)1\pm\sqrt{C(e,p,q)\mu}+O(\mu) in the limit μ0\mu\to 0. The coefficient C(e,p,q)C(e,p,q) is analytic in ee at e=0e=0 and C(e,p,q)=O(e^{\abs{p-q}}). The coefficients in front of e^{\abs{p-q}}, obtained when C(e,p,q)C(e,p,q) is expanded in powers of ee for the two resonant periodic motions, sum to zero. Typically, if one of the two resonant periodic motions is of elliptic type the other is of hyperbolic type. We give similar results for retrograde periodic motions and discuss periodic motions that nearly collide with the primary of mass 1μ1-\mu

    Model order reduction approaches for infinite horizon optimal control problems via the HJB equation

    Full text link
    We investigate feedback control for infinite horizon optimal control problems for partial differential equations. The method is based on the coupling between Hamilton-Jacobi-Bellman (HJB) equations and model reduction techniques. It is well-known that HJB equations suffer the so called curse of dimensionality and, therefore, a reduction of the dimension of the system is mandatory. In this report we focus on the infinite horizon optimal control problem with quadratic cost functionals. We compare several model reduction methods such as Proper Orthogonal Decomposition, Balanced Truncation and a new algebraic Riccati equation based approach. Finally, we present numerical examples and discuss several features of the different methods analyzing advantages and disadvantages of the reduction methods

    A device for feasible fidelity, purity, Hilbert-Schmidt distance and entanglement witness measurements

    Full text link
    A generic model of measurement device which is able to directly measure commonly used quantum-state characteristics such as fidelity, overlap, purity and Hilbert-Schmidt distance for two general uncorrelated mixed states is proposed. In addition, for two correlated mixed states, the measurement realizes an entanglement witness for Werner's separability criterion. To determine these observables, the estimation only one parameter - the visibility of interference, is needed. The implementations in cavity QED, trapped ion and electromagnetically induced transparency experiments are discussed.Comment: 6 pages, 3 figure

    Neutron matter at zero temperature with auxiliary field diffusion Monte Carlo

    Full text link
    The recently developed auxiliary field diffusion Monte Carlo method is applied to compute the equation of state and the compressibility of neutron matter. By combining diffusion Monte Carlo for the spatial degrees of freedom and auxiliary field Monte Carlo to separate the spin-isospin operators, quantum Monte Carlo can be used to simulate the ground state of many nucleon systems (A\alt 100). We use a path constraint to control the fermion sign problem. We have made simulations for realistic interactions, which include tensor and spin--orbit two--body potentials as well as three-nucleon forces. The Argonne v8v_8' and v6v_6' two nucleon potentials plus the Urbana or Illinois three-nucleon potentials have been used in our calculations. We compare with fermion hypernetted chain results. We report results of a Periodic Box--FHNC calculation, which is also used to estimate the finite size corrections to our quantum Monte Carlo simulations. Our AFDMC results for v6v_6 models of pure neutron matter are in reasonably good agreement with equivalent Correlated Basis Function (CBF) calculations, providing energies per particle which are slightly lower than the CBF ones. However, the inclusion of the spin--orbit force leads to quite different results particularly at relatively high densities. The resulting equation of state from AFDMC calculations is harder than the one from previous Fermi hypernetted chain studies commonly used to determine the neutron star structure.Comment: 15 pages, 15 tables and 5 figure

    Parametrization of projector-based witnesses for bipartite systems

    Full text link
    Entanglement witnesses are nonpositive Hermitian operators which can detect the presence of entanglement. In this paper, we provide a general parametrization for orthonormal basis of Cn{\mathbb C}^n and use it to construct projector-based witness operators for entanglement detection in the vicinity of pure bipartite states. Our method to parameterize entanglement witnesses is operationally simple and could be used for doing symbolic and numerical calculations. As an example we use the method for detecting entanglement between an atom and the single mode of quantized field, described by the Jaynes-Cummings model. We also compare the detection of witnesses with the negativity of the state, and show that in the vicinity of pure stats such constructed witnesses able to detect entanglement of the state.Comment: 12 pages, four figure

    Spectral properties of the dimerized and frustrated S=1/2S=1/2 chain

    Full text link
    Spectral densities are calculated for the dimerized and frustrated S=1/2 chain using the method of continuous unitary transformations (CUTs). The transformation to an effective triplon model is realized in a perturbative fashion up to high orders about the limit of isolated dimers. An efficient description in terms of triplons (elementary triplets) is possible: a detailed analysis of the spectral densities is provided for strong and intermediate dimerization including the influence of frustration. Precise predictions are made for inelastic neutron scattering experiments probing the S=1 sector and for optical experiments (Raman scattering, infrared absorption) probing the S=0 sector. Bound states and resonances influence the important continua strongly. The comparison with the field theoretic results reveals that the sine-Gordon model describes the low-energy features for strong to intermediate dimerization only at critical frustration.Comment: 21 page

    Electromagnetic transitions of the helium atom in superstrong magnetic fields

    Full text link
    We investigate the electromagnetic transition probabilities for the helium atom embedded in a superstrong magnetic field taking into account the finite nuclear mass. We address the regime \gamma=100-10000 a.u. studying several excited states for each symmetry, i.e. for the magnetic quantum numbers 0,-1,-2,-3, positive and negative z parity and singlet and triplet symmetry. The oscillator strengths as a function of the magnetic field, and in particular the influence of the finite nuclear mass on the oscillator strengths are shown and analyzed.Comment: 10 pages, 8 figure

    Spin-1/2 J1-J2 model on the body-centered cubic lattice

    Full text link
    Using exact diagonalization (ED) and linear spin wave theory (LSWT) we study the influence of frustration and quantum fluctuations on the magnetic ordering in the ground state of the spin-1/2 J1-J2 Heisenberg antiferromagnet (J1-J2 model) on the body-centered cubic (bcc) lattice. Contrary to the J1-J2 model on the square lattice, we find for the bcc lattice that frustration and quantum fluctuations do not lead to a quantum disordered phase for strong frustration. The results of both approaches (ED, LSWT) suggest a first order transition at J2/J1 \approx 0.7 from the two-sublattice Neel phase at low J2 to a collinear phase at large J2.Comment: 6.1 pages 7 figure
    corecore