63 research outputs found

    Conference Program

    Get PDF

    Conference Program

    Get PDF

    In-Line Oil-Water Separation in Swirling Flow (USB stick)

    Get PDF
    An in-line oil-water separator has been designed and is investigated for single- and two-phase flow. Numerical single-phase flow results show an annular reversed flow region. This flow pattern agrees qualitatively with results from measurements. In the two-phase flow simulations two different drag laws have been used to model the interaction between the phases. The velocity field of the single- and the two-phase flow is shown to be very similar. However, the oil volume fraction distribution is strongly affected by the choice of the drag law. Furthermore, compared to experimental results for both drag laws the separation efficiency is greatly overestimate

    Comparison of optical probes and X-ray tomography for bubble characterization in fluidized bed methanation reactors

    Get PDF
    The performance of many fluidized bed reactors strongly depends on the bubble behavior since they influence the mass transfer to the dense phase where the catalyst is present. An example is the methanation in a fluidized bed that allows for conversion of unsaturated hydrocarbons in the gasification gas without catalyst deactivation [1]. The BFB reactor is a very challenging step in the process chain to produce SNG out of biomass as feedstock since next to the bubble behavior a lot of other parameters like temperature, pressure, particle size, attrition of the catalyst, internals, bed height and reactor diameter etc. affect the overall performance. The focus of this research work lies on the determination of the bubble properties which are an important factor to model a bubbling fluidized methanation reactor in order to predict and optimize its performance and to support its scale-up [2]. Tomographic methods such as X-ray measurements are often used to characterize bubbles in a fluidized bed. Compared to intrusive measurement, e.g. optical probing, this method possesses the advantage of measuring bubbles throughout the entire cross section. However, X-ray measurements cannot be applied to all installation, especially not in large scale plants. For these purpose, we have developed optical probes that can be employed to investigate the fluidization state in a hot pilot scale reactor. A main drawback of the optical measurements lies in their locally limited detection of the hydrodynamic pattern since they are only able to measure at one point in the reactor. Therefore, conclusions on the bubble behavior of the whole cross section based on optical measurements are not easy to derive. To compare the influence of the measurement method on the measured bubble properties, in the scope of this study, an artificial optical signal is created out of the existing X-ray measurement data set for a cold flow model of the pilot scale methanation reactor. The obtained bubble properties of both methods (i.e. evaluation of the derived artificial optical probe signal and image reconstruction based on the original X-ray tomographic data) are compared with regard to the hold-up, bubble rise velocity and the bubble size (for the X-ray method) or chord length (for the optical evaluation method), respectively. The process to obtain an artificial optical signal is depicted in Figure 1. The comparison shows that for the evaluation of optical probe data, statistical effects have to be considered carefully. The detected mean chord length of the optical method does not represent the mean bubble size determined by the X-ray method. Moreover, also a difference in the bubble rise velocity was detected for some fluidization states. This knowledge may be the basis for the derivation of a statistically sound method to calculate different hydrodynamic properties in fluidized bed reactors based on optical probe measurements. Please click Additional Files below to see the full abstract

    Gravity-driven bubbly flows

    No full text

    Inverse modelling of the inflow distribution for the liquid/gas flow in horizontal pipelines

    No full text
    A new approach for optimal control and real-time monitoring of horizontal wells is presented. This methodology uses inverse modelling concepts to estimate downhole flow rates that are not measured directly. The real-time estimator proposed is an ensemble Kalman filter combining a dynamic model of the multiphase pipe flow and information from conventional downhole sensors. The performance of the proposed algorithm has been studied for simulation based case studies both for noisy synthetic measurements and artificial data generated by the OLGA simulator. © 2009 BHR Group Multiphase Production Technology

    Beam hardening: Analytical considerations of the effective attenuation coefficient of x-ray tomography

    No full text
    Polychromatic x-ray beams traveling though material are prone to beam hardening, i.e., the high energy part of the incident spectrum gets over represented when traveling farther into the material. This study discusses the concept of a mean attenuation coefficient in a formal way. The total energy fluence is one-to-one related to the traveled distance in case of a polychromatic beam moving through a given, inhomogeneous material. On the basis of this one-to-one relation, it is useful to define a mean attenuation coefficient and study its decrease with depth. Our results are based on a novel parametrization of the energy dependence of the attenuation coefficient that allows for closed form evaluation of certain spectral integrals. This approach underpins the ad hoc semianalytical expressions given in the literature. An analytical model for the average attenuation coefficient is proposed that uses a simple fit of the attenuation coefficient as a function of the photon energy as input. It is shown that a simple extension of this model gives a rather good description of beam hardening for x-rays traveling through water.Imaging Science & TechnologyApplied Science

    Inter-compartment interaction in multi-impeller mixing: Part II. Experiments, sliding mesh and large Eddy simulations

    No full text
    Steady state multiple reference frame-RANS (MRF-RANS) simulations frequently show strong over-predictions of the mixing time in single-phase, multi-impeller mixing tanks, which is sometimes patched by ad hoc tuning of the turbulent Schmidt-number. In Part I of this work, we experimentally revealed the presence of macro-instabilities in the region between the impellers, as well as a peak in the turbulent kinetic energy in the region where the flow from the individual impellers converges. The MRF-RANS method was found unable to capture both. In this second paper, we show that the sliding-mesh RANS (SM-RANS) approach does capture the effect of macro-instabilities, while still underestimating the turbulent kinetic energy. Consequently, the SM-RANS method mildly over-estimates the mixing time, while being less sensitive to the exact mesh geometry. Large eddy simulations with the dynamic Smagorinsky model reasonably capture the kinetic energy contained in macro-instabilities, and properly assess the turbulent kinetic energy in the region between the impellers, even for crude meshes. Consequently, the mixing time is reasonably assessed, and even under-predicted at the crudest meshes. However, the turbulent kinetic energy and energy dissipation in the impeller discharge stream are poorly assessed by the dynamic Smagorinsky model.</p
    • …
    corecore