816 research outputs found

    On the formation of axial corner vortices during spin-up in a cylinder of square cross-section

    Get PDF
    We present experimental and theoretical results for the adjustment of a fluid (homogeneous or linearly stratified), which is initially rotating as a solid body with angular frequency Ω−ΔΩ, to a nonlinear increase ΔΩ in the angular frequency of all bounding surfaces. The fluid is contained in a cylinder of square cross-section which is aligned centrally along the rotation axis, and we focus on the O(Ro−1Ω−1) time scale, where Ro=ΔΩ/Ω is the Rossby number. The flow development is shown to be dominated by unsteady separation of a viscous sidewall layer, leading to an eruption of vorticity that becomes trapped in the four vertical corners of the container. The longer-time evolution on the standard ‘spin-up’ time scale, E−1/2Ω−1 (where E is the associated Ekman number), has been described in detail for this geometry by Foster & Munro (J. Fluid Mech., vol. 712, 2012, pp. 7–40), but only for small changes in the container’s rotation rate (i.e. Ro≪1). In the linear case, for Ro≪E1/2≪1, there is no sidewall separation. In the present investigation we focus on the fully nonlinear problem, Ro=O(1), for which the sidewall viscous layers are Prandtl boundary layers and (somewhat unusually) periodic around the container’s circumference. Some care is required in the corners of the container, but we show that the sidewall boundary layer breaks down (separates) shortly after an impulsive change in rotation rate. These theoretical boundary-layer results are compared with two-dimensional Navier–Stokes results which capture the eruption of vorticity, and these are in turn compared to laboratory observations and data. The experiments show that when the Burger number, S=(N/Ω)2 (where N is the buoyancy frequency), is relatively large – corresponding to a strongly stratified fluid – the flow remains (horizontally) two-dimensional on the O(Ro−1Ω−1) time scale, and good quantitative predictions can be made by a two-dimensional theory. As S was reduced in the experiments, three-dimensional effects were observed to become important in the core of each corner vortex, on this time scale, but only after the breakdown of the sidewall layers

    Hazen -A New Barley Variety for North Dakota

    Get PDF
    The article is regarding the breeding history, agronomic characteristics of, the disease reaction of, the malting quality of and brewing tests of the new hybrid variety, the Hazen, in North Dakota

    Supporting the learning of deaf students in higher education: a case study at Sheffield Hallam University

    Get PDF
    This article is an examination of the issues surrounding support for the learning of deaf students in higher education (HE). There are an increasing number of deaf students attending HE institutes, and as such provision of support mechanisms for these students is not only necessary but essential. Deaf students are similar to their hearing peers, in that they will approach their learning and require differing levels of support dependant upon the individual. They will, however, require a different kind of support, which can be technical or human resource based. This article examines the issues that surround supporting deaf students in HE with use of a case study of provision at Sheffield Hallam University (SHU), during the academic year 1994-95. It is evident that by considering the needs of deaf students and making changes to our teaching practices that all students can benefit

    The (d,6-Li) Reaction Studies

    Get PDF
    Supported by the National Science Foundation and Indiana Universit

    Study of the 3-Nucleon System: d+p Breakup Measurements at E_d = 80 MeV

    Get PDF
    This work was supported by the National Science Foundation Grant NSF PHY 81-14339 and by Indiana Universit

    Conditional quantum dynamics with several observers

    Full text link
    We consider several observers who monitor different parts of the environment of a single quantum system and use their data to deduce its state. We derive a set of conditional stochastic master equations that describe the evolution of the density matrices each observer ascribes to the system under the Markov approximation, and show that this problem can be reduced to the case of a single "super-observer", who has access to all the acquired data. The key problem - consistency of the sets of data acquired by different observers - is then reduced to the probability that a given combination of data sets will be ever detected by the "super-observer". The resulting conditional master equations are applied to several physical examples: homodyne detection of phonons in quantum Brownian motion, photo-detection and homodyne detection of resonance fluorescence from a two-level atom. We introduce {\it relative purity} to quantify the correlations between the information about the system gathered by different observers from their measurements of the environment. We find that observers gain the most information about the state of the system and they agree the most about it when they measure the environment observables with eigenstates most closely correlated with the optimally predictable {\it pointer basis} of the system.Comment: Updated version: new title and contents. 22 pages, 8 figure

    Preparations for Recoil Detection System at the Cooler T-Site

    Get PDF
    This research was sponsored by the National Science Foundation Grant NSF PHY-931478
    • …
    corecore