61 research outputs found

    Polynomial evaluation over finite fields: new algorithms and complexity bounds

    Full text link
    An efficient evaluation method is described for polynomials in finite fields. Its complexity is shown to be lower than that of standard techniques when the degree of the polynomial is large enough. Applications to the syndrome computation in the decoding of Reed-Solomon codes are highlighted.Comment: accepted for publication in Applicable Algebra in Engineering, Communication and Computing. The final publication will be available at springerlink.com. DOI: 10.1007/s00200-011-0160-

    On Convergence Properties of Shannon Entropy

    Full text link
    Convergence properties of Shannon Entropy are studied. In the differential setting, it is shown that weak convergence of probability measures, or convergence in distribution, is not enough for convergence of the associated differential entropies. A general result for the desired differential entropy convergence is provided, taking into account both compactly and uncompactly supported densities. Convergence of differential entropy is also characterized in terms of the Kullback-Liebler discriminant for densities with fairly general supports, and it is shown that convergence in variation of probability measures guarantees such convergence under an appropriate boundedness condition on the densities involved. Results for the discrete setting are also provided, allowing for infinitely supported probability measures, by taking advantage of the equivalence between weak convergence and convergence in variation in this setting.Comment: Submitted to IEEE Transactions on Information Theor

    A Generalization of Quantum Stein's Lemma

    Get PDF
    We present a generalization of quantum Stein's Lemma to the situation in which the alternative hypothesis is formed by a family of states, which can moreover be non-i.i.d.. We consider sets of states which satisfy a few natural properties, the most important being the closedness under permutations of the copies. We then determine the error rate function in a very similar fashion to quantum Stein's Lemma, in terms of the quantum relative entropy. Our result has two applications to entanglement theory. First it gives an operational meaning to an entanglement measure known as regularized relative entropy of entanglement. Second, it shows that this measure is faithful, being strictly positive on every entangled state. This implies, in particular, that whenever a multipartite state can be asymptotically converted into another entangled state by local operations and classical communication, the rate of conversion must be non-zero. Therefore, the operational definition of multipartite entanglement is equivalent to its mathematical definition.Comment: 30 pages. (see posting by M. Piani arXiv:0904.2705 for a different proof of the strict positiveness of the regularized relative entropy of entanglement on every entangled state). published version

    Faster DTMF Decoding

    No full text

    Turbo Codes in Binary Erasure Channel

    No full text
    • …
    corecore