61 research outputs found
Polynomial evaluation over finite fields: new algorithms and complexity bounds
An efficient evaluation method is described for polynomials in finite fields.
Its complexity is shown to be lower than that of standard techniques when the
degree of the polynomial is large enough. Applications to the syndrome
computation in the decoding of Reed-Solomon codes are highlighted.Comment: accepted for publication in Applicable Algebra in Engineering,
Communication and Computing. The final publication will be available at
springerlink.com. DOI: 10.1007/s00200-011-0160-
On Convergence Properties of Shannon Entropy
Convergence properties of Shannon Entropy are studied. In the differential
setting, it is shown that weak convergence of probability measures, or
convergence in distribution, is not enough for convergence of the associated
differential entropies. A general result for the desired differential entropy
convergence is provided, taking into account both compactly and uncompactly
supported densities. Convergence of differential entropy is also characterized
in terms of the Kullback-Liebler discriminant for densities with fairly general
supports, and it is shown that convergence in variation of probability measures
guarantees such convergence under an appropriate boundedness condition on the
densities involved. Results for the discrete setting are also provided,
allowing for infinitely supported probability measures, by taking advantage of
the equivalence between weak convergence and convergence in variation in this
setting.Comment: Submitted to IEEE Transactions on Information Theor
A Generalization of Quantum Stein's Lemma
We present a generalization of quantum Stein's Lemma to the situation in
which the alternative hypothesis is formed by a family of states, which can
moreover be non-i.i.d.. We consider sets of states which satisfy a few natural
properties, the most important being the closedness under permutations of the
copies. We then determine the error rate function in a very similar fashion to
quantum Stein's Lemma, in terms of the quantum relative entropy.
Our result has two applications to entanglement theory. First it gives an
operational meaning to an entanglement measure known as regularized relative
entropy of entanglement. Second, it shows that this measure is faithful, being
strictly positive on every entangled state. This implies, in particular, that
whenever a multipartite state can be asymptotically converted into another
entangled state by local operations and classical communication, the rate of
conversion must be non-zero. Therefore, the operational definition of
multipartite entanglement is equivalent to its mathematical definition.Comment: 30 pages. (see posting by M. Piani arXiv:0904.2705 for a different
proof of the strict positiveness of the regularized relative entropy of
entanglement on every entangled state). published version
- …