1,111 research outputs found

    Multi-wavelength reflection spectra from an acousto-optic modulated fiber Bragg grating in a highly birefringent suspended core fiber

    Get PDF
    The interaction of a fiber Bragg grating and longitudinal acoustic waves in a highly birefringent suspended-core fiber is investigated for the realization of a multi-wavelength reflection property. The modulated grating couples power from the fast and slow polarization modes to shifted superposed modes supported by the grating. The grating reflectivity of the superposed modes are tuned by the voltage of an electrical signal. Up to five different wavelength reflection peaks have been generated indicating new possibilities for compact and fast fiber-integrated multi-wavelength dynamic filters

    Electrically Tunable Multiwavelength Bragg Grating Filter Acoustically Induced in a Highly Birefringent Suspended Core Fiber

    Get PDF
    Multiwavelength reflection spectra induced by an acoustically modulated fiber Bragg grating (FBG) in a highly birefringent suspended core fiber are experimentally investigated. Longitudinal acoustic waves interacting with a grating generate side lobes in the reflectivity spectrum and produce a superposed reflection band. The reflectivity of up to five wavelength peaks can be actively tuned by the voltage of the electrical signal inducing the acoustic waves. This indicates new possibilities for compact and fast multiwavelength dynamic and fiber-integrated reflection filters

    Reflectivity and Bandwidth Modulation of Fiber Bragg Gratings in a Suspended Core Fiber by Tunable Acoustic Waves

    Get PDF
    The acousto-optic modulation of fiber Bragg gratings in a four-hole suspended core fiber is experimentally demonstrated. Strong modulations with a reflectivity amplitude decrease by up to 67% and a 57% bandwidth increase in the Bragg resonance are obtained for gratings of 0.26- and 1-nm 3-dB bandwidths, respectively. The reduction of the required acoustic power for achieving the acousto-optic modulation compared to conventional solid-core single-mode fibers points to more efficient modulator devices in suspended core fibers

    All-fiber laser mode-locked by the acousto-optic modulation of a fiber Bragg grating in suspended core fiber

    Get PDF
    An ytterbium-doped fiber laser mode-locked by the interaction of a fiber Bragg grating and longitudinal acoustic waves in a suspended core fiber is experimentally investigated. An optimized design of an acousto-optic modulator is also proposed. The results indicate output pulses with a width of less than 550 ps at a repetition rate of 10 MHz. The reduction of the power consumed by the transducer and the grating length points out to more efficient, compact and fast acousto-optic modulators for mode-locked all-fiber lasers

    Quantum correlations and fluctuations in the pulsed light produced by a synchronously pumped optical parametric oscillator below its oscillation threshold

    Full text link
    We present a simple quantum theory for the pulsed light generated by a synchronously pumped optical parametric oscillator (SPOPO) in the degenerate case where the signal and idler trains of pulses coincide, below threshold and neglecting all dispersion effects. Our main goal is to precise in the obtained quantum effects, which ones are identical to the c.w. case and which ones are specific to the SPOPO. We demonstrate in particular that the temporal correlations have interesting peculiarities: the quantum fluctuations at different times within the same pulse turn out to be totally not correlated, whereas they are correlated between nearby pulses at times that are placed in the same position relative to the centre of the pulses. The number of significantly correlated pulses is of the order of cavity finesse. We show also that there is perfect squeezing at noise frequencies multiple of the pulse repetition frequency when one approaches the threshold from below on the signal field quadrature measured by a balanced homodyne detection with a local oscillator of very short duration compared to the SPOPO pulse length.Comment: 12 pages, 3 figure

    FERMION ZERO MODES AND BLACK-HOLE HYPERMULTIPLETS WITH RIGID SUPERSYMMETRY

    Get PDF
    The gravitini zero modes riding on top of the extreme Reissner-Nordstrom black-hole solution of N=2 supergravity are shown to be normalizable. The gravitini and dilatini zero modes of axion-dilaton extreme black-hole solutions of N=4 supergravity are also given and found to have finite norms. These norms are duality invariant. The finiteness and positivity of the norms in both cases are found to be correlated with the Witten-Israel-Nester construction; however, we have replaced the Witten condition by the pure-spin-3/2 constraint on the gravitini. We compare our calculation of the norms with the calculations which provide the moduli space metric for extreme black holes. The action of the N=2 hypermultiplet with an off-shell central charge describes the solitons of N=2 supergravity. This action, in the Majumdar-Papapetrou multi-black-hole background, is shown to be N=2 rigidly supersymmetric.Comment: 18 pages, LaTe

    Manageable creativity

    Get PDF
    This article notes a perception in mainstream management theory and practice that creativity has shifted from being disruptive or destructive to 'manageable'. This concept of manageable creativity in business is reflected in a similar rhetoric in cultural policy, especially towards the creative industries. The article argues that the idea of 'manageable creativity' can be traced back to a 'heroic' and a 'structural' model of creativity. It is argued that the 'heroic' model of creativity is being subsumed within a 'structural' model which emphasises the systems and infrastructure around individual creativity rather than focusing on raw talent and pure content. Yet this structured approach carries problems of its own, in particular a tendency to overlook the unpredictability of creative processes, people and products. Ironically, it may be that some confusion in our policies towards creativity is inevitable, reflecting the paradoxes and transitions which characterise the creative process

    Can lepton flavor violating interactions explain the LSND results?

    Full text link
    If the atmospheric and the solar neutrino problem are both explained by neutrino oscillations, and if there are only three light neutrinos, then all mass-squared differences between the neutrinos are known. In such a case, existing terrestrial neutrino oscillation experiments cannot be significantly affected by neutrino oscillations, but, in principle there could be an anomaly in the neutrino flux due to new neutrino interactions. We discuss how a non-standard muon decay μ+→e+νˉeνℓ\mu^+ \to e^+ \bar\nu_e \nu_\ell would modify the neutrino production processes of these experiments. Since SU(2)LSU(2)_L violation is small for New Physics above the weak scale one can use related flavor-violating charged lepton processes to constrain these decays in a model independent way. We show that the upper bounds on μ→3e\mu \to 3e, muonium-antimuonium conversion and τ→μee\tau \to \mu e e rule out any observable effect for the present experiments due to μ+→e+νˉeνℓ\mu^+ \to e^+ \bar\nu_e \nu_\ell for ℓ=e,μ,τ\ell=e,\mu,\tau, respectively. Applying similar arguments to flavor-changing semi-leptonic reactions we exclude the possibility that the "oscillation signals" observed at LSND are due to flavor-changing interactions that conserve total lepton number.Comment: 21 pages, 6 figures, Latex; minor correction
    • …
    corecore