44 research outputs found
Running Backwards: Consequences of Current HIV Incidence Rates for the Next Generation of Black MSM in the United States
Black men who have sex with men (MSM) in the United States are disproportionately impacted by HIV. To better understand this public health problem, we reviewed the literature to calculate an estimate of HIV incidence among Black MSM. We used this rate to model HIV prevalence over time within a simulated cohort, which we subsequently compared to prevalence from community-based samples. We searched all databases accessible through PubMed, and Conference on Retroviruses and Opportunistic Infections abstracts for HIV incidence estimates among Black MSM. Summary HIV incidence rates and 95 % confidence intervals (CIs) were calculated using random effects models. Using the average incidence rate, we modeled HIV prevalence within a simulated cohort of Black MSM (who were all HIV-negative at the start) from ages 18 through 40. Based on five incidence rates totaling 2898 Black MSM, the weighted mean incidence was 4.16 % per year (95 % CI 2.76–5.56). Using this annual incidence rate, our model predicted that 39.94 % of Black MSM within the simulated cohort would be HIV-positive by age 30, and 60.73 % by 40. Projections were similar to HIV prevalence found in community-based samples of Black MSM. High HIV prevalence will persist across the life-course among Black MSM, unless effective prevention and treatment efforts are increased to substantially reduce HIV transmission among this underserved and marginalized population
A-dependence of nuclear transparency in quasielastic A(e,e'p) at high Q^2
The A-dependence of the quasielastic A(e,e'p) reaction has been studied at
SLAC with H-2, C, Fe, and Au nuclei at momentum transfers Q^2 = 1, 3, 5, and
6.8 (GeV/c)^2. We extract the nuclear transparency T(A,Q^2), a measure of the
average probability that the struck proton escapes from the nucleus A without
interaction. Several calculations predict a significant increase in T with
momentum transfer, a phenomenon known as Color Transparency. No significant
rise within errors is seen for any of the nuclei studied.Comment: 5 pages incl. 2 figures, Caltech preprint OAP-73
Evidence for virtual Compton scattering from the proton
In virtual Compton scattering an electron is scattered off a nucleon such that the nucleon emits a photon. We show that these events can be selected experimentally, and present the first evidence for virtual Compton scattering from the proton in data obtained at the Stanford Linear Accelerator Center. The angular and energy dependence of the data is well described by a calculation that includes the coherent sum of electron and proton radiation
Measurement of the Neutron Spin Structure Function with a Polarized ^3He Target
Results are reported from the HERMES experiment at HERA on a measurement of
the neutron spin structure function in deep inelastic scattering
using 27.5 GeV longitudinally polarized positrons incident on a polarized
He internal gas target. The data cover the kinematic range
and . The integral evaluated at a fixed of is . Assuming Regge behavior at low , the first
moment is .Comment: 4 pages TEX, text available at
http://www.krl.caltech.edu/preprints/OAP.htm
Momentum transfer dependence of nuclear transparency from the quasielastic 12C(e,e’p) reaction
The cross section for quasielastic 12C(e,e’p) scattering has been measured at momentum transfer Q2=1, 3, 5, and 6.8 (GeV/c)2. The results are consistent with scattering from a single nucleon as the dominant process. The nuclear transparency is obtained and compared with theoretical calculations that incorporate color transparency effects. No significant rise of the transparency with Q2 is observed
Inclusive electron scattering from nuclei at x≃1
The inclusive A(e,e′) cross section for x≃1 was measured on 2H, C, Fe, and Au for momentum transfers Q2 from 1 to 6.8 (GeV/c)2. The scaling behavior of the data was examined in the region of transition from y scaling to x scaling. Throughout this transitional region, the data exhibit ξ scaling, reminiscent of the Bloom-Gilman duality seen in free nucleon scattering
Two-Body Photodisintegration of the Deuteron up to 2.8 GeV
Measurements were performed for the photodisintegration cross section of the deuteron for photon energies from 1.6 to 2.8 GeV and center-of-mass angles from 37° to 90°. The measured energy dependence of the cross section at θc.m.=90° is in agreement with the constituent counting rules
Evidence for Virtual Compton Scattering from Proton
In virtual Compton scattering an electron is scattered off a nucleon such that the nucleon emits a photon. We show that these events can be selected experimentally, and present the first evidence for virtual Compton scattering from the proton in data obtained at the Stanford Linear Accelerator Center. The angular and energy dependence of the data is well described by a calculation that includes the coherent sum of electron and proton radiation
Astronomical Distance Determination in the Space Age: Secondary Distance Indicators
The formal division of the distance indicators into primary and secondary leads to difficulties in description of methods which can actually be used in two ways: with, and without the support of the other methods for scaling. Thus instead of concentrating on the scaling requirement we concentrate on all methods of distance determination to extragalactic sources which are designated, at least formally, to use for individual sources. Among those, the Supernovae Ia is clearly the leader due to its enormous success in determination of the expansion rate of the Universe. However, new methods are rapidly developing, and there is also a progress in more traditional methods. We give a general overview of the methods but we mostly concentrate on the most recent developments in each field, and future expectations. © 2018, The Author(s)