18 research outputs found

    B2.5-Eunomia simulations of Pilot-PSI

    No full text

    Simulation of the Neutral Inventory in the Pilot-PSI Beam

    No full text
    The Eunomia code is used to study the neutral species in and near a hydrogen plasma beam. Eunomia is a non-linear Monte Carlo transport code that solves the neutral equilibrium, given a fixed background plasma. The code is developed to study the neutral inventory of Pilot-PSI and Magnum-PSI, linear devices developed to study plasma surface interactions in similar conditions as expected in the ITER divertor. Results show the influence of elastic collisions and the outer vessel wall on the neutral species. In the center of the 2 cm diameter Pilot-PSI beam the results show a strong coupling to the plasma. Only millimeters away from the center, the neutral flow, temperature and density are strongly influenced by recombination processes at the vessel wall ((c) 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

    B2.5-Eunomia simulations of Pilot-PSI plasmas

    No full text
    Abstract The B2.5-Eunomia code is used to simulate the plasma and neutral species in and around a Pilot-PSI plasma beam. B2.5, part of the SOLPS5.0 code package, is a multi-fluid plasma code for the scrape-off layer. Eunomia is a newly developed non-linear Monte Carlo transport code that solves the neutral equilibrium, given a background plasma. Eunomia is developed to simulate the relevant neutral species in Pilot-PSI and Magnum-PSI, linear devices that study plasma surface interactions in conditions expected in the ITER divertor. Results show the influence of the neutral species on the Pilot-PSI plasma beam. We show that a fluid description for the neutrals is not sufficient and Eunomia is needed to describe Pilot-PSI. The treatment of individual vibrational states of molecular hydrogen as separate species is crucial to match the experiment

    High-resolution gamma ray spectroscopy measurements of the fast ion energy distribution in JET He-4 plasmas

    No full text

    Overview of JET results

    No full text
    Since the last IAEA conference, the scientific programme of JET has focused on the qualification of the integrated operating scenarios for ITER and on physics issues essential for the consolidation of design choices and the efficient exploitation of ITER. Particular attention has been given to the characterization of the edge plasma, pedestal energy and edge localized modes (ELMs), and their impact on plasma facing components (PFCs). Various ELM mitigation techniques have been assessed for all ITER operating scenarios using active methods such as resonant magnetic field perturbation, rapid variation of the radial field and pellet pacing. In particular, the amplitude and frequency of type I ELMs have been actively controlled over a wide parameter range (q95 = 3-4.8, βN ≥ 3.0) by adjusting the amplitude of the n = 1 external perturbation field induced by error field correction coils. The study of disruption induced heat loads on PFCs has taken advantage of a new wide-angle viewing infrared system and a fast bolometer to provide a detailed account of time, localization and form of the energy deposition. Specific ITER-relevant studies have used the unique JET capability of varying the toroidal field (TF) ripple from its normal low value δBT = 0.08% up to δBT = 1% to study the effect of TF ripple on high confinement-mode plasmas. The results suggest that δBT < 0.5% is required on ITER to maintain adequate confinement to allow QDT = 10 at full field. Physics issues of direct relevance to ITER include heat and toroidal momentum transport, with experiments using power modulation to decouple power input and torque to achieve first experimental evidence of inward momentum pinch in JET and determine the threshold for ion temperature gradient driven modes. Within the longer term JET programme in support of ITER, activities aiming at the modification of the JET first wall and divertor and the upgrade of the neutral beam and plasma control systems are being conducted. The procurement of all components will be completed by 2009 with the shutdown for the installation of the beryllium wall and tungsten divertor extending from summer 2009 to summer 2010

    Analysis of damping rate measurements of toroidal Alfven eigenmodes as a function of n: part II (vol 52, 023014, 2012)

    No full text
    corecore