9 research outputs found

    Treatment and outcome of aquaporin-4 antibody-positive NMOSD: A multinational pediatric study

    Get PDF
    Objective To describe the clinical phenotypes, treatment response, and outcome of children with antibodies against aquaporin-4 (AQP4-Ab) neuromyelitis optica spectrum disorder (NMOSD). Methods Retrospective, multicenter, and multinational study of patients with AQP4-Ab NMOSD aged <18 years at disease onset from a center in Brazil and 13 European centers. Data on demographics, clinical findings, and laboratory results were analyzed; calculation of annualized relapse rates (ARRs) pre- and on-treatment with disease-modifying therapies (DMTs) and of ORs for predictors of poor outcome was performed. Results A total of 67 children were identified. At last follow-up (median 4 years, interquartile range 2–10 years), 37/67(57.8%) were found to have permanent disability. A more severe disease course was seen in the non-White ethnicity with both a shorter time to first relapse (p = 0.049) and a worse Expanded Disability Status Scale score at last follow-up (p = 0.008). The median ARR on treatment was 0.18 on azathioprine (n = 39, range 0–4), 0 on mycophenolate mofetil (n = 18, range 0–3), and 0 on rituximab (n = 29, range 0–2). No patient treated with rituximab as first-line therapy relapsed. Optic neuritis at onset was associated with a poor visual outcome below 20/200 (OR 8.669, 95% CI 1.764–42.616, p = 0.008), and a younger age at onset was associated with cognitive impairment (OR 0.786, 95% CI 0.644–0.959, p = 0.018). Conclusions AQP4-Ab NMOSD in children is an aggressive disease with permanent disabilities observed in over half the cohort. All DMTs were associated with a reduction of ARR. First-line rituximab prevented further clinical relapses. International consensus on treatment protocols for children is required to reduce heterogeneity of treatment regimens used worldwide. Classification of evidence This study provides Class IV evidence that for children with AQP4-Ab NMOSD, all DMTs, particularly first-line rituximab, reduced the ARR and prevented further clinical relapses

    TRY plant trait database – enhanced coverage and open access

    Get PDF
    Plant traits—the morphological, anatomical, physiological, biochemical and phenological characteristics of plants—determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait‐based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits—almost complete coverage for ‘plant growth form’. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait–environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives

    Advances in imaging to support the development of novel therapies for multiple sclerosis.

    No full text
    Multiple sclerosis (MS) is a common neurological disease in North America and Europe. Although most patients develop major locomotor disability over the course of 15-20 years, in approximately one-third of patients the long-term course is favorable, with minimal disability. Although current disease-modifying treatments reduce the relapse rate, their long-term effects are uncertain. MS treatment trials are challenging because of the variable clinical course and typically slow evolution of the disease. Magnetic resonance imaging (MRI) is sensitive in monitoring MS pathology and facilitates evaluation of potential new treatments. MRI measurements of lesion activity have identified new immunomodulatory treatments for preventing relapse. Quantitative measurements of tissue volume and structural integrity, capable of detecting neuroprotection and repair, should facilitate new treatments designed to prevent irreversible disability. Higher-field MR scanners and new positron emission tomography (PET) radioligands are providing new insights into cellular and pathophysiological abnormalities, and should be valuable in future therapeutic trials. Retinal axonal loss measured using optical coherence tomography (OCT) can assess acute neuroprotection in optic neuritis

    High Temperature Plasticity of Bimetallic Magnesium and Aluminum Friction Stir Welded Joints

    No full text
    The high temperature deformation of a bimetallic AZ31/AA6061 Friction Stir Welded joint was investigated in the present study by constant load creep experiments carried out at 473 K (200 degrees C). The microstructural analysis revealed the strongly inhomogeneous nature of the weld, which was characterized by an extremely fine grain size in the magnesium-rich zones and by the extensive presence of intermetallic phases. In the high stress regime, the creep strain was concentrated in the refined and particle-rich microstructure of the weld zone, while the AA6061 base metal remained undeformed. In the low stress regime, deformation became more homogeneously distributed between the AZ31 base metal and the weld zone. The creep behavior of the weld was found to obey the constitutive equation describing the minimum creep rate dependence on applied stress for the base AZ31, slightly modified to take into account the finer microstructure and the role of secondary phase particles, i.e., the retardation of grain growth and the obstruction of grain boundary sliding

    Tumour-inhibiting platinum complexes—state of the art and future perspectives

    No full text

    TRY plant trait database, enhanced coverage and open access

    No full text
    Plant traits-the morphological, ahawnatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives
    corecore