68 research outputs found
A solution concentration dependent transition from self-stratification to lateral phase separation in spin-cast PS:d-PMMA thin films
Thin films with a rich variety of different nano-scale morphologies have been produced by spin casting solutions of various concentrations of PS:d-PMMA blends from toluene solutions. During the spin casting process specular reflectivity and off-specular scattering data were recorded and ex situ optical and atomic force microscopy, neutron reflectivity and ellipsometry have all been used to characterise the film morphologies. We show that it is possible to selectively control the film morphology by altering the solution concentration used. Low polymer concentration solutions favour the formation of flat in-plane phase-separated bi-layers, with a d-PMMA-rich layer underneath a PS-rich layer. At intermediate concentrations the films formed consist of an in-plane phase-separated bi-layer with an undulating interface and also have some secondary phase-separated pockets rich in d-PMMA in the PS-rich layer and vice versa. Using high concentration solutions results in laterally phase-separated regions with sharp interfaces. As with the intermediate concentrations, secondary phase separation was also observed, especially at the top surface
Application of mean-field theory to the spin casting of polystyrene and poly(methyl methacrylate) blend films from toluene
The Flory-Huggins free energy of mixing is shown to be appropriate for the analysis of the temporal evolution of a ternary blend of polystyrene and poly (methyl methacrylate) during spin-coating from toluene using an in-situ light scattering technique. For the range of concentrations studied, both the onset of film instability and the observation of a scattering ring occur at the same toluene volume fraction. The success of Flory-Huggins theory indicates that polymer chains retain random walk characteristics during spin-coating. It is also concluded that the thermodynamics of phase separation during film formation is independent of the initial solvent concentration
Profile retrieval of a buried periodic structure using spin echo grazing incidence neutron scattering
When the neutron scattering technique, Spin Echo Resolved Grazing Incidence Scattering (SERGIS) concept, was originally put forward by Rekveldt [Physica B 1135, 234–236 (1997)] and Felcher et al. [Proc. SPIE 4785, 164 (2002)], they recognized that the specular scattering and the off-specular scattering could be spatially separated due to the tight neutron beam collimation in the scattering plane, a necessity for any reflectometry experiment. In this Letter, we show that it is possible to make large area measurements of periodic grating structures using SERGIS in a number of interesting scenarios. The SERGIS data can be analyzed using a dynamical theory, which makes it possible to effectively retrieve the lateral profile of a commercial periodic diffraction grating. Interestingly, this is still the case even when that grating is buried beneath a highly deuterated poly(methyl methacrylate-D8) polymer layer. We also clearly demonstrate that the maximum sensitivity to lateral structures is achieved when the specular reflection from the grating is excluded from the data analysis, demonstrating a feature of SERGIS that was proposed over two decades ago
Controlling the structures of organic semiconductor–quantum dot nanocomposites through ligand shell chemistry
Nanocrystal quantum dots (QD) functionalised with active organic ligands hold significant promise as solar energy conversion materials, capable of multiexcitonic processes that could improve the efficiencies of single-junction photovoltaic devices. Small-angle X-ray and neutron scattering (SAXS and SANS) were used to characterize the structure of lead sulphide QDs post ligand-exchange with model acene-carboxylic acid ligands (benzoic acid, hydrocinnamic acid and naphthoic acid). Results demonstrate that hydrocinnamic acid and naphthoic acid ligated QDs form monolayer ligand shells, whilst benzoic acid ligated QDs possess ligand shells thicker than a monolayer. Further, the formation of a range of nanocomposite materials through the self-assembly of such acene-ligated QDs with an organic small-molecule semiconductor [5,12-bis((triisopropylsilyl)ethynyl)tetracene (TIPS-Tc)] is investigated. These materials are representative of a wider set of functional solar energy materials; here the focus is on structural studies, and their optoelectronic function is not investigated. As TIPS-Tc concentrations are increased, approaching the solubility limit, SANS data show that QD fractal-like features form, with structures possibly consistent with a diffusion limited aggregation mechanism. These, it is likely, act as heterogeneous nucleation agents for TIPS-Tc crystallization, generating agglomerates containing both QDs and TIPS-Tc. Within the TIPS-Tc crystals there seem to be three distinct QD morphologies: (i) at the crystallite centre (fractal-like QD aggregates acting as nucleating agents), (ii) trapped within the growing crystallite (giving rise to QD features ordered as sticky hard spheres), and (iii) a population of aggregate QDs at the periphery of the crystalline interface that were expelled from the growing TIPS-Tc crystal. Exposure of the QD:TIPS-Tc crystals to DMF vapour, a solvent known to be able to strip ligands from QDs, alters the spacing between PbS–hydrocinnamic acid and PbS–naphthoic acid ligated QD aggregate features. In contrast, for PbS–benzoic acid ligated QDs, DMF vapour exposure promotes the formation of ordered QD colloidal crystal type phases. This work thus demonstrates how different QD ligand chemistries control the interactions between QDs and an organic small molecule, leading to widely differing self-assembly processes. It highlights the unique capabilities of multiscale X-ray and neutron scattering in characterising such composite materials
X-ray nano-tomography of complete scales from the ultra-white beetles Lepidiota stigma and Cyphochilus
High resolution X-ray nano-tomography experiments are often limited to a few tens of micrometer size volumes due to detector size. It is possible, through the use of multiple overlapping tomography scans, to produce a large area scan which can encompass a sample in its entirety. Mounting and positioning regions to be scanned is highly challenging and normally requires focused ion beam approaches. In this work we have imaged intact beetle scale cells mounted on the tip of a needle using a micromanipulator stage. Here we show X-ray holotomography data for single ultra-white scales from the beetles Lepidiota stigma (L. stigma) and Cyphochilus which exhibit the most effective scattering of white light in the literature. The final thresholded matrices represent a scan area of 25 × 70 × 362.5 µm and 25 × 67.5 × 235µm while maintaining a pixel resolution of 25 nm. This tomographic approach allowed the internal structure of the scales to be captured completely intact and undistorted by the sectioning required for traditional microscopy techniques
Hydration and Ordering of Lamellar Block Copolymer Films under Controlled Water Vapor
Amphiphilic block copolymers within a range of volume fraction spontaneously form vesicles in aqueous solution, where a water core is enclosed by a polymer bilayer. Thin-film rehydration is a method used to produce vesicles routinely; a thin film is immersed in water, the film swells, and vesicles are formed which bleb off from the film surface. We have studied the early stages of hydration for PEO–PBO block copolymer thin films under controlled water vapor conditions to understand this formation mechanism and so enable more efficient ways to encapsulate molecules using this method. Neutron and X-ray measurements show that the initial film exhibits weakly ordered structure with isotropic parallel and vertical orientation; the films initially swell and maintain the same orientation. At a critical point the layer swells rapidly and makes highly ordered lamellae structure at the same time. The lamellae are almost exclusively oriented parallel to the substrate and swell with increasing water absorption
Enhancing the efficiency of PTB7-Th:COi8DFIC-based ternary solar cells with versatile third components
Traditional single-junction binary organic solar cells suffer from narrow absorption windows, limiting their ability to harvest photons. One promising approach to avoid this issue is through the construction of a ternary system to enhance the spectral response and efficiency. However, the complex morphology and photophysical processes within ternary blends leave the criteria of an effective third component unclear, and so they remain a challenge. In this work, we report on the fabrication of PTB7-Th:COi8DFIC-based ternary solar cells with enhanced efficiency by employing either a polymer donor or a nonfullerene acceptor as the third component. We demonstrate that the third component is highly associated with the condensed state of the host acceptor and is the primary factor in determining efficiency improvement. The π-π stacking molecular packing of COi8DFIC helps to maintain the optimal phase separation within the ternary blends and improves both the hole and electron charge mobilities, resulting in enhanced power conversion efficiency of over 14%, compared to 13.1% in binary devices. We also found an excessive amount of polymer donor or nonfullerene acceptor increases the phase separation and encourages lamellar crystallization with the host acceptor domain, resulting in reduced light-harvesting and external quantum efficiencies at long wavelengths. Our results provide a rational guide to selecting the third component to fabricate high-performance nonfullerene-based ternary solar cells
Influences of Non-fullerene Acceptor Fluorination on Three-Dimensional Morphology and Photovoltaic Properties of Organic Solar Cells
Fluorination of conjugated molecules has been established as an effective structural modification strategy to influence properties and has attracted extensive attention in organic solar cells (OSCs). Here, we have investigated optoelectronic and photovoltaic property changes of OSCs made of polymer donors with the non-fullerene acceptors (NFAs) ITIC and IEICO and their fluorinated counterparts IT-4F and IEICO-4F. Device studies show that fluorinated NFAs lead to reduced Voc but increased Jsc and fill-factor (FF), and therefore, the ultimate influence to efficiency depends on the compensation of Voc loss and gains of Jsc and FF. Fluorination lowers energy levels of NFAs, reduces their electronic band gaps, and red-shifts the absorption spectra. The impact of fluorination on the molecular order depends on the specific NFA, and the conversion of ITIC to IT-4F reduces the structural order, which can be reversed after blending with the donor PBDB-T. Contrastingly, IEICO-4F presents stronger π–π stacking after fluorination from IEICO, and this is further strengthened after blending with the donor PTB7-Th. The photovoltaic blends universally present a donor-rich surface region which can promote charge transport and collection toward the anode in inverted OSCs. The fluorination of NFAs, however, reduces the fraction of donors in this donor-rich region, consequently encouraging the intermixing of donor/acceptor for efficient charge generation
Mixed small-molecule matrices improve nanoparticle dispersibility in organic semiconductor-nanoparticle films
Controlling the dispersibility of nanocrystalline inorganic quantum dots (QDs) within organic semiconductor (OSC):QD nanocomposite films is critical for a wide range of optoelectronic devices. This work demonstrates how small changes to the OSC host molecule can have a dramatic detrimental effect on QD dispersibility within the host organic semiconductor matrix as quantified by grazing incidence X-ray scattering. It is commonplace to modify QD surface chemistry to enhance QD dispersibility within an OSC host. Here, an alternative route toward optimizing QD dispersibilities is demonstrated, which dramatically improves QD dispersibilities through blending two different OSCs to form a fully mixed OSC matrix phase
- …