19 research outputs found

    Continuous variable entanglement and quantum state teleportation between optical and macroscopic vibrational modes through radiation pressure

    Full text link
    We study an isolated, perfectly reflecting, mirror illuminated by an intense laser pulse. We show that the resulting radiation pressure efficiently entangles a mirror vibrational mode with the two reflected optical sideband modes of the incident carrier beam. The entanglement of the resulting three-mode state is studied in detail and it is shown to be robust against the mirror mode temperature. We then show how this continuous variable entanglement can be profitably used to teleport an unknown quantum state of an optical mode onto the vibrational mode of the mirror.Comment: 18 pages, 10 figure

    Achieving high molecular conversion efficiency via a magnetic field pulse train

    No full text
    We investigate the process of production of ultracold molecules in an ultracold bosonic system with particle interaction via designing a magnetic field pulse train near a Feshbach resonance. This technique offers a high conversion efficiency up to 100% by tuning the pulse durations appropriately. The molecular conversion efficiency is related to the duration of each pulse, which can be derived analytically. It is found that the conversion efficiency is insensitive to the first pulse, highly sensitive to the second one, and very insensitive to the third one. The effects of particle interaction on conversion process are discussed as well.Physics, Condensed MatterSCI(E)EI0ARTICLE6null8
    corecore