19 research outputs found
Continuous variable entanglement and quantum state teleportation between optical and macroscopic vibrational modes through radiation pressure
We study an isolated, perfectly reflecting, mirror illuminated by an intense
laser pulse. We show that the resulting radiation pressure efficiently
entangles a mirror vibrational mode with the two reflected optical sideband
modes of the incident carrier beam. The entanglement of the resulting
three-mode state is studied in detail and it is shown to be robust against the
mirror mode temperature. We then show how this continuous variable entanglement
can be profitably used to teleport an unknown quantum state of an optical mode
onto the vibrational mode of the mirror.Comment: 18 pages, 10 figure
Achieving high molecular conversion efficiency via a magnetic field pulse train
We investigate the process of production of ultracold molecules in an ultracold bosonic system with particle interaction via designing a magnetic field pulse train near a Feshbach resonance. This technique offers a high conversion efficiency up to 100% by tuning the pulse durations appropriately. The molecular conversion efficiency is related to the duration of each pulse, which can be derived analytically. It is found that the conversion efficiency is insensitive to the first pulse, highly sensitive to the second one, and very insensitive to the third one. The effects of particle interaction on conversion process are discussed as well.Physics, Condensed MatterSCI(E)EI0ARTICLE6null8