51,712 research outputs found

    Collaborative Training in Sensor Networks: A graphical model approach

    Full text link
    Graphical models have been widely applied in solving distributed inference problems in sensor networks. In this paper, the problem of coordinating a network of sensors to train a unique ensemble estimator under communication constraints is discussed. The information structure of graphical models with specific potential functions is employed, and this thus converts the collaborative training task into a problem of local training plus global inference. Two important classes of algorithms of graphical model inference, message-passing algorithm and sampling algorithm, are employed to tackle low-dimensional, parametrized and high-dimensional, non-parametrized problems respectively. The efficacy of this approach is demonstrated by concrete examples

    Critical domain-wall dynamics of model B

    Full text link
    With Monte Carlo methods, we simulate the critical domain-wall dynamics of model B, taking the two-dimensional Ising model as an example. In the macroscopic short-time regime, a dynamic scaling form is revealed. Due to the existence of the quasi-random walkers, the magnetization shows intrinsic dependence on the lattice size LL. A new exponent which governs the LL-dependence of the magnetization is measured to be σ=0.243(8)\sigma=0.243(8).Comment: 10pages, 4 figure

    Graphs with many valencies and few eigenvalues

    Full text link
    Dom de Caen posed the question whether connected graphs with three distinct eigenvalues have at most three distinct valencies. We do not answer this question, but instead construct connected graphs with four and five distinct eigenvalues and arbitrarily many distinct valencies. The graphs with four distinct eigenvalues come from regular two-graphs. As a side result, we characterize the disconnected graphs and the graphs with three distinct eigenvalues in the switching class of a regular two-graph

    Exact dynamics of dissipative electronic systems and quantum transport: Hierarchical equations of motion approach

    Full text link
    A quantum dissipation theory is formulated in terms of hierarchically coupled equations of motion for an arbitrary electronic system coupled with grand canonical Fermion bath ensembles. The theoretical construction starts with the second--quantization influence functional in path integral formalism, in which the Fermion creation and annihilation operators are represented by Grassmann variables. Time--derivatives on influence functionals are then performed in a hierarchical manner, on the basis of calculus--on--path--integral algorithm. Both the multiple--frequency--dispersion and the non-Markovian reservoir parametrization schemes are considered for the desired hierarchy construction. The resulting formalism is in principle exact, applicable to interacting systems, with arbitrary time-dependent external fields. It renders an exact tool to evaluate various transient and stationary quantum transport properties of many-electron systems. At the second--tier truncation level the present theory recovers the real--time diagrammatic formalism developed by Sch\"{o}n and coworkers. For a single-particle system, the hierarchical formalism terminates at the second tier exactly, and the Landuer--B\"{u}ttiker's transport current expression is readily recovered.Comment: The new versio

    Vanishing Gamow-Teller Transition Rate for A=14 and the Nucleon-Nucleon Interaction in the Medium

    Get PDF
    The problem of the near vanishing of the Gamow-Teller transition (GTGT) in the A=14 system between the lowest J=0+ T=1J=0^+~ T=1 and J=1+ T=0J=1^+~ T=0 states is revisited. The model space is extended from the valence space (p2)(p^{-2}) to the valence space plus all 2ω\hbar \omega excitations. The question is addressed as to what features of the effective nucleon-nucleon interaction in the medium are required to obtain the vanishing GTGT strength in this extended space. It turns out that a combination of a realistic strength of the tensor force combined with a spin-orbit interaction which is enhanced as compared to the free interaction yields a vanishing GTGT strength. Such an interaction can be derived from a microscopic meson exchange potential if the enhancement of the small component of the Dirac spinors for the nucleons is taken into account.Comment: RevTex file, 7 pages, four postscript figures. submitted to Phys. Rev. C as a brief repor

    Cosmic microwave background constraints on cosmological models with large-scale isotropy breaking

    Get PDF
    Several anomalies appear to be present in the large-angle cosmic microwave background (CMB) anisotropy maps of WMAP, including the alignment of large-scale multipoles. Models in which isotropy is spontaneously broken (e.g., by a scalar field) have been proposed as explanations for these anomalies, as have models in which a preferred direction is imposed during inflation. We examine models inspired by these, in which isotropy is broken by a multiplicative factor with dipole and/or quadrupole terms. We evaluate the evidence provided by the multipole alignment using a Bayesian framework, finding that the evidence in favor of the model is generally weak. We also compute approximate changes in estimated cosmological parameters in the broken-isotropy models. Only the overall normalization of the power spectrum is modified significantly.Comment: Accepted for publication in Phys. Rev.
    corecore