246,393 research outputs found
: An Excellent Candidate of Tetraquarks
We analyze various possible interpretations of the narrow state
which lies 100 MeV above threshold. This interesting state
decays mainly into instead of . If this relative branching
ratio is further confirmed by other experimental groups, we point out that the
identification of either as a state or more generally
as a state in the representation is probably
problematic. Instead, such an anomalous decay pattern strongly indicates
is a four quark state in the representation
with the quark content . We discuss its
partners in the same multiplet, and the similar four-quark states composed of a
bottom quark . Experimental searches of other members
especially those exotic ones are strongly called for
Patient acceptability, safety and access : A balancing act for selecting age-appropriate oral dosage forms for paediatric and geriatric populations
© 2017 Elsevier B.V. All rights reserved.The selection and design of age-appropriate formulations intended for use in paediatric and geriatric patients are dependent on multiple factors affecting patient acceptability, safety and access. The development of an economic and effective product relies on a balanced consideration of the risks and benefits of these factors. This review provides a comprehensive and up-to-date analysis of oral dosage forms considering key aspects of formulation design including dosage considerations, ease of use, tolerability and safety, manufacturing complexity, stability, supply and cost. Patient acceptability has been examined utilising an evidence-based approach to evaluate regulatory guidance and literature. Safety considerations including excipients and potential risk of administration errors of the different dosage forms are also discussed, together with possible manufacturing and supply challenges. Age appropriate drug product design should consider and compare i) acceptability ii) safety and iii) access, although it is important to recognise that these factors must be balanced against each other, and in some situations a compromise may need to be reached when selecting an age-appropriate formulation.Peer reviewedFinal Accepted Versio
A Study of Linear Approximation Techniques for SAR Azimuth Processing
The application of the step transform subarray processing techniques to synthetic aperture radar (SAR) was studied. The subarray technique permits the application of efficient digital transform computational techniques such as the fast Fourier transform to be applied while offering an effective tool for range migration compensation. Range migration compensation is applied at the subarray level, and with the subarray size based on worst case range migration conditions, a minimum control system is achieved. A baseline processor was designed for a four-look SAR system covering approximately 4096 by 4096 SAR sample field every 2.5 seconds. Implementation of the baseline system was projected using advanced low power technologies. A 20 swath is implemented with approximately 1000 circuits having a power dissipation of from 70 to 195 watts. The baseline batch step transform processor is compared to a continuous strip processor, and variations of the baseline are developed for a wide range of SAR parameters
The classification of all single travelling wave solutions to Calogero-Degasperis-Focas equation
Under the travelling wave transformation, Calogero-Degasperis-Focas equation
was reduced to an ordinary differential equation. Using a symmetry group of
one-parameter, this ODE was reduced to a second order linear inhomogeneous ODE.
Furthermore, we applied the change of the variable and complete discrimination
system for polynomial to solve the corresponding integrals and obtained the
classification of all single travelling wave solutions to
Calogero-Degasperis-Focas equation.Comment: 9 page
Extreme Thouless effect in a minimal model of dynamic social networks
In common descriptions of phase transitions, first order transitions are
characterized by discontinuous jumps in the order parameter and normal
fluctuations, while second order transitions are associated with no jumps and
anomalous fluctuations. Outside this paradigm are systems exhibiting `mixed
order transitions' displaying a mixture of these characteristics. When the jump
is maximal and the fluctuations range over the entire range of allowed values,
the behavior has been coined an `extreme Thouless effect'. Here, we report
findings of such a phenomenon, in the context of dynamic, social networks.
Defined by minimal rules of evolution, it describes a population of extreme
introverts and extroverts, who prefer to have contacts with, respectively, no
one or everyone. From the dynamics, we derive an exact distribution of
microstates in the stationary state. With only two control parameters,
(the number of each subgroup), we study collective variables of
interest, e.g., , the total number of - links and the degree
distributions. Using simulations and mean-field theory, we provide evidence
that this system displays an extreme Thouless effect. Specifically, the
fraction jumps from to (in the
thermodynamic limit) when crosses , while all values appear with
equal probability at .Comment: arXiv admin note: substantial text overlap with arXiv:1408.542
Advanced digital SAR processing study
A highly programmable, land based, real time synthetic aperture radar (SAR) processor requiring a processed pixel rate of 2.75 MHz or more in a four look system was designed. Variations in range and azimuth compression, number of looks, range swath, range migration and SR mode were specified. Alternative range and azimuth processing algorithms were examined in conjunction with projected integrated circuit, digital architecture, and software technologies. The advaced digital SAR processor (ADSP) employs an FFT convolver algorithm for both range and azimuth processing in a parallel architecture configuration. Algorithm performace comparisons, design system design, implementation tradeoffs and the results of a supporting survey of integrated circuit and digital architecture technologies are reported. Cost tradeoffs and projections with alternate implementation plans are presented
Generalized L\"uscher Formula in Multi-channel Baryon-Meson Scattering
L\"uscher's formula relates the elastic scattering phase shifts to the
two-particle energy levels in a finite cubic box. The original formula was
obtained for elastic scattering of two massive spinless particles in the center
of mass frame. In this paper, we consider the case for the scattering of a spin
1/2 particle with a spinless particle in multi-channel scattering. A
generalized relation between the energy of two particle system and the
scattering matrix elements is established. We first obtain this relation using
quantum-mechanics in both center-of-mass frame and in a general moving frame.
The result is then generalized to quantum field theory using methods outlined
in Ref. \cite{Hansen:2012tf}. We verify that the results obtained using both
methods are equivalent up to terms that are exponentially suppressed in the box
size.Comment: One reference adde
Stabilization of colloidal suspensions by means of highly-charged nanoparticles
We employ a novel Monte Carlo simulation scheme to elucidate the
stabilization of neutral colloidal microspheres by means of highly-charged
nanoparticles [V. Tohver et al., Proc. Natl. Acad. Sci. U.S.A. 98, 8950
(2001)]. In accordance with the experimental observations, we find that small
nanoparticle concentrations induce an effective repulsion that prevents
gelation caused by the intrinsic van der Waals attraction between colloids.
Higher nanoparticle concentrations induce an attractive potential which is,
however, qualitatively different from the regular depletion attraction. We also
show how colloid-nanoparticle size asymmetry and nanoparticle charge can be
used to manipulate the effective interactions.Comment: Accepted for publication in Physical Review Letters. See also S.
Karanikas and A.A. Louis, cond-mat/0411279. Updated to synchronize with
published versio
- …
