246,393 research outputs found

    DsJ+(2632)D_{sJ}^+(2632): An Excellent Candidate of Tetraquarks

    Full text link
    We analyze various possible interpretations of the narrow state DsJ(2632)D_{sJ}(2632) which lies 100 MeV above threshold. This interesting state decays mainly into DsηD_s \eta instead of D0K+D^0 K^+. If this relative branching ratio is further confirmed by other experimental groups, we point out that the identification of DsJ(2632)D_{sJ}(2632) either as a csˉc\bar s state or more generally as a 3ˉ{\bf {\bar 3}} state in the SU(3)FSU(3)_F representation is probably problematic. Instead, such an anomalous decay pattern strongly indicates DsJ(2632)D_{sJ}(2632) is a four quark state in the SU(3)FSU(3)_F 15{\bf 15} representation with the quark content 122(dsdˉ+sddˉ+suuˉ+usuˉ2sssˉ)cˉ{1\over 2\sqrt{2}} (ds\bar{d}+sd\bar{d}+su\bar{u}+us\bar{u}-2ss\bar{s})\bar{c}. We discuss its partners in the same multiplet, and the similar four-quark states composed of a bottom quark BsJ0(5832)B_{sJ}^0(5832). Experimental searches of other members especially those exotic ones are strongly called for

    Patient acceptability, safety and access : A balancing act for selecting age-appropriate oral dosage forms for paediatric and geriatric populations

    Get PDF
    © 2017 Elsevier B.V. All rights reserved.The selection and design of age-appropriate formulations intended for use in paediatric and geriatric patients are dependent on multiple factors affecting patient acceptability, safety and access. The development of an economic and effective product relies on a balanced consideration of the risks and benefits of these factors. This review provides a comprehensive and up-to-date analysis of oral dosage forms considering key aspects of formulation design including dosage considerations, ease of use, tolerability and safety, manufacturing complexity, stability, supply and cost. Patient acceptability has been examined utilising an evidence-based approach to evaluate regulatory guidance and literature. Safety considerations including excipients and potential risk of administration errors of the different dosage forms are also discussed, together with possible manufacturing and supply challenges. Age appropriate drug product design should consider and compare i) acceptability ii) safety and iii) access, although it is important to recognise that these factors must be balanced against each other, and in some situations a compromise may need to be reached when selecting an age-appropriate formulation.Peer reviewedFinal Accepted Versio

    A Study of Linear Approximation Techniques for SAR Azimuth Processing

    Get PDF
    The application of the step transform subarray processing techniques to synthetic aperture radar (SAR) was studied. The subarray technique permits the application of efficient digital transform computational techniques such as the fast Fourier transform to be applied while offering an effective tool for range migration compensation. Range migration compensation is applied at the subarray level, and with the subarray size based on worst case range migration conditions, a minimum control system is achieved. A baseline processor was designed for a four-look SAR system covering approximately 4096 by 4096 SAR sample field every 2.5 seconds. Implementation of the baseline system was projected using advanced low power technologies. A 20 swath is implemented with approximately 1000 circuits having a power dissipation of from 70 to 195 watts. The baseline batch step transform processor is compared to a continuous strip processor, and variations of the baseline are developed for a wide range of SAR parameters

    The classification of all single travelling wave solutions to Calogero-Degasperis-Focas equation

    Full text link
    Under the travelling wave transformation, Calogero-Degasperis-Focas equation was reduced to an ordinary differential equation. Using a symmetry group of one-parameter, this ODE was reduced to a second order linear inhomogeneous ODE. Furthermore, we applied the change of the variable and complete discrimination system for polynomial to solve the corresponding integrals and obtained the classification of all single travelling wave solutions to Calogero-Degasperis-Focas equation.Comment: 9 page

    Extreme Thouless effect in a minimal model of dynamic social networks

    Full text link
    In common descriptions of phase transitions, first order transitions are characterized by discontinuous jumps in the order parameter and normal fluctuations, while second order transitions are associated with no jumps and anomalous fluctuations. Outside this paradigm are systems exhibiting `mixed order transitions' displaying a mixture of these characteristics. When the jump is maximal and the fluctuations range over the entire range of allowed values, the behavior has been coined an `extreme Thouless effect'. Here, we report findings of such a phenomenon, in the context of dynamic, social networks. Defined by minimal rules of evolution, it describes a population of extreme introverts and extroverts, who prefer to have contacts with, respectively, no one or everyone. From the dynamics, we derive an exact distribution of microstates in the stationary state. With only two control parameters, NI,EN_{I,E} (the number of each subgroup), we study collective variables of interest, e.g., XX, the total number of II-EE links and the degree distributions. Using simulations and mean-field theory, we provide evidence that this system displays an extreme Thouless effect. Specifically, the fraction X/(NINE)X/\left( N_{I}N_{E}\right) jumps from 00 to 11 (in the thermodynamic limit) when NIN_{I} crosses NEN_{E}, while all values appear with equal probability at NI=NEN_{I}=N_{E}.Comment: arXiv admin note: substantial text overlap with arXiv:1408.542

    Advanced digital SAR processing study

    Get PDF
    A highly programmable, land based, real time synthetic aperture radar (SAR) processor requiring a processed pixel rate of 2.75 MHz or more in a four look system was designed. Variations in range and azimuth compression, number of looks, range swath, range migration and SR mode were specified. Alternative range and azimuth processing algorithms were examined in conjunction with projected integrated circuit, digital architecture, and software technologies. The advaced digital SAR processor (ADSP) employs an FFT convolver algorithm for both range and azimuth processing in a parallel architecture configuration. Algorithm performace comparisons, design system design, implementation tradeoffs and the results of a supporting survey of integrated circuit and digital architecture technologies are reported. Cost tradeoffs and projections with alternate implementation plans are presented

    Generalized L\"uscher Formula in Multi-channel Baryon-Meson Scattering

    Full text link
    L\"uscher's formula relates the elastic scattering phase shifts to the two-particle energy levels in a finite cubic box. The original formula was obtained for elastic scattering of two massive spinless particles in the center of mass frame. In this paper, we consider the case for the scattering of a spin 1/2 particle with a spinless particle in multi-channel scattering. A generalized relation between the energy of two particle system and the scattering matrix elements is established. We first obtain this relation using quantum-mechanics in both center-of-mass frame and in a general moving frame. The result is then generalized to quantum field theory using methods outlined in Ref. \cite{Hansen:2012tf}. We verify that the results obtained using both methods are equivalent up to terms that are exponentially suppressed in the box size.Comment: One reference adde

    Stabilization of colloidal suspensions by means of highly-charged nanoparticles

    Full text link
    We employ a novel Monte Carlo simulation scheme to elucidate the stabilization of neutral colloidal microspheres by means of highly-charged nanoparticles [V. Tohver et al., Proc. Natl. Acad. Sci. U.S.A. 98, 8950 (2001)]. In accordance with the experimental observations, we find that small nanoparticle concentrations induce an effective repulsion that prevents gelation caused by the intrinsic van der Waals attraction between colloids. Higher nanoparticle concentrations induce an attractive potential which is, however, qualitatively different from the regular depletion attraction. We also show how colloid-nanoparticle size asymmetry and nanoparticle charge can be used to manipulate the effective interactions.Comment: Accepted for publication in Physical Review Letters. See also S. Karanikas and A.A. Louis, cond-mat/0411279. Updated to synchronize with published versio
    corecore