583 research outputs found

    Entanglement quantification from incomplete measurements: Applications using photon-number-resolving weak homodyne detectors

    Full text link
    The certificate of success for a number of important quantum information processing protocols, such as entanglement distillation, is based on the difference in the entanglement content of the quantum states before and after the protocol. In such cases, effective bounds need to be placed on the entanglement of non-local states consistent with statistics obtained from local measurements. In this work, we study numerically the ability of a novel type of homodyne detector which combines phase sensitivity and photon-number resolution to set accurate bounds on the entanglement content of two-mode quadrature squeezed states without the need for full state tomography. We show that it is possible to set tight lower bounds on the entanglement of a family of two-mode degaussified states using only a few measurements. This presents a significant improvement over the resource requirements for the experimental demonstration of continuous-variable entanglement distillation, which traditionally relies on full quantum state tomography.Comment: 18 pages, 6 figure

    Certified Quantum Random Numbers from Untrusted Light

    Get PDF
    A remarkable aspect of quantum theory is that certain measurement outcomes are entirely unpredictable to all possible observers. Such quantum events can be harnessed to generate numbers whose randomness is asserted based upon the underlying physical processes. We formally introduce, design and experimentally demonstrate an ultrafast optical quantum random number generator that uses a totally untrusted photonic source. While considering completely general quantum attacks, we certify and generate in real-time random numbers at a rate of 8.05 Gb/s with a rigorous security parameter of 10^(−10). Our security proof is entirely composable, thereby allowing the generated randomness to be utilised for arbitrary applications in cryptography and beyond. To our knowledge, this represents the fastest composably secure source of quantum random numbers ever reported

    Stationary optomechanical entanglement between a mechanical oscillator and its measurement apparatus

    Get PDF
    We provide an argument to infer stationary entanglement between light and a mechanical oscillator based on continuous measurement of light only. We propose an experimentally realizable scheme involving an optomechanical cavity driven by a resonant, continuous-wave field operating in the non-sideband-resolved regime. This corresponds to the conventional configuration of an optomechanical position or force sensor. We show analytically that entanglement between the mechanical oscillator and the output field of the optomechanical cavity can be inferred from the measurement of squeezing in (generalized) Einstein-Podolski-Rosen quadratures of suitable temporal modes of the stationary light field. Squeezing can reach levels of up to 50% of noise reduction below shot noise in the limit of large quantum cooperativity. Remarkably, entanglement persists even in the opposite limit of small cooperativity. Viewing the optomechanical device as a position sensor, entanglement between mechanics and light is an instance of object-apparatus entanglement predicted by quantum measurement theory

    Noiseless Linear Amplification and Distillation of Entanglement

    Full text link
    The idea of signal amplification is ubiquitous in the control of physical systems, and the ultimate performance limit of amplifiers is set by quantum physics. Increasing the amplitude of an unknown quantum optical field, or more generally any harmonic oscillator state, must introduce noise. This linear amplification noise prevents the perfect copying of the quantum state, enforces quantum limits on communications and metrology, and is the physical mechanism that prevents the increase of entanglement via local operations. It is known that non-deterministic versions of ideal cloning and local entanglement increase (distillation) are allowed, suggesting the possibility of non-deterministic noiseless linear amplification. Here we introduce, and experimentally demonstrate, such a noiseless linear amplifier for continuous-variables states of the optical field, and use it to demonstrate entanglement distillation of field-mode entanglement. This simple but powerful circuit can form the basis of practical devices for enhancing quantum technologies. The idea of noiseless amplification unifies approaches to cloning and distillation, and will find applications in quantum metrology and communications.Comment: Submitted 10 June 200

    Clostridium difficile ribotypes in Austria: a multicenter, hospital-based survey

    Get PDF
    A prospective, noninterventional survey was conducted among Clostridium difficile positive patients identified in the time period of July until October 2012 in 18 hospitals distributed across all nine Austrian provinces. Participating hospitals were asked to send stool samples or isolates from ten successive patients with C.difficile infection to the National Clostridium difficile Reference Laboratory at the Austrian Agency for Health and Food Safety for PCR-ribotyping and in vitro susceptibility testing. A total of 171 eligible patients were identified, including 73 patients with toxin-positive stool specimens and 98 patients from which C. difficile isolates were provided. Of the 159 patients with known age, 127 (74.3 %) were 65 years or older, the median age was 76 years (range: 9–97 years), and the male to female ratio 2.2. Among these patients, 73 % had health care-associated and 20 % community-acquired C. difficile infection (indeterminable 7 %). The all-cause, 30-day mortality was 8.8 % (15/171). Stool samples yielded 46 different PCR-ribotypes, of which ribotypes 027 (20 %), 014 (15.8 %), 053 (10.5 %), 078 (5.3 %), and 002 (4.7 %) were the five most prevalent. Ribotype 027 was found only in the provinces Vienna, Burgenland, and Lower Austria. Severe outcome of C. difficile infection was found to be associated with ribotype 053 (prevalence ratio: 3.04; 95 % CI: 1.24, 7.44), not with the so-called hypervirulent ribotypes 027 and 078. All 027 and 053 isolates exhibited in vitro resistance against moxifloxacin. Fluoroquinolone use in the health care setting must be considered as a factor favoring the spread of these fluoroquinolone resistant C. difficile clones

    Measurement of LHCD edge power deposition through modulation techniques on Alcator C-Mod

    Get PDF
    The efficiency of LHCD on Alcator C-Mod drops exponentially with line average density. At reactor relevant densities (> 1 · 1020 [m[-3 superscript]]) no measurable current is driven. While a number of causes have been suggested, no specific mechanism has been shown to be responsible for the loss of current drive at high density. Fast modulation of the LH power was used to isolate and quantify the LHCD deposition within the plasma. Measurements from these plasmas provide unique evidence for determining a root cause. Modulation of LH power in steady plasmas exhibited no correlated change in the core temperature. A correlated, prompt response in the edge suggests that the loss in efficiency is related to a edge absorption mechanism. This follows previous results which found the generation of n||-independent SOL currents. Multiple Langmuir probe array measurements of the conducted heat conclude that the lost power is deposited near the last closed flux surface. The heat flux induced by LH waves onto the outer divertor is calculated. Changes in the neutral pressure, ionization and hard X-ray emission at high density highlight the importance of the active divertor in the loss of efficiency. Results of this study implicate a mechanism which may occur over multiple passes, leading to power absorption near the LCFS

    Dimensions Affecting Representation Styles in Ontologies

    Get PDF
    There are different ways to formalise roughly the same knowledge, which negatively affects ontology reuse and alignment and other tasks such as formalising competency questions automatically. We aim to shed light on, and make more precise, the intuitive notion of such `representation styles' through characterising their inherent features and the dimensions by which a style may differ. This has led to a total of 28 different traits that are partitioned over 10 dimensions. The operationalisability was assessed through an evaluation of 30 ontologies on those dimensions and applicable values. It showed that it is feasible to use the dimensions and values and resulting in three easily recognisable types of ontologies. Most ontologies had clearly one or the other trait, whereas some were inherently mixed due to inclusion of different and conflicting design decisions

    Quasi-coherent fluctuations limiting the pedestal growth on Alcator C-Mod: experiment and modelling

    Get PDF
    Performance predictions for future fusion devices rely on an accurate model of the pedestal structure. The candidate for predictive pedestal structure is EPED, and it is imperative to test the underlying hypotheses to further gain confidence for ITER projections. Here, we present experimental work testing one of the EPED hypotheses, namely the existence of a soft limit set by microinstabilities such as the kinetic ballooning mode. This work extends recent work on Alactor C-Mod (Diallo et al 2014 Phys. Rev. Lett. 112 115001), to include detailed measurements of the edge fluctuations and comparisons of edge simulation codes and experimental observations

    The MetaCyc Database of metabolic pathways and enzymes and the BioCyc collection of Pathway/Genome Databases

    Get PDF
    MetaCyc (MetaCyc.org) is a universal database of metabolic pathways and enzymes from all domains of life. The pathways in MetaCyc are curated from the primary scientific literature, and are experimentally determined small-molecule metabolic pathways. Each reaction in a MetaCyc pathway is annotated with one or more well-characterized enzymes. Because MetaCyc contains only experimentally elucidated knowledge, it provides a uniquely high-quality resource for metabolic pathways and enzymes. BioCyc (BioCyc.org) is a collection of more than 350 organism-specific Pathway/Genome Databases (PGDBs). Each BioCyc PGDB contains the predicted metabolic network of one organism, including metabolic pathways, enzymes, metabolites and reactions predicted by the Pathway Tools software using MetaCyc as a reference database. BioCyc PGDBs also contain predicted operons and predicted pathway hole fillers—predictions of which enzymes may catalyze pathway reactions that have not been assigned to an enzyme. The BioCyc website offers many tools for computational analysis of PGDBs, including comparative analysis and analysis of omics data in a pathway context. The BioCyc PGDBs generated by SRI are offered for adoption by any interested party for the ongoing integration of metabolic and genome-related information about an organism
    • …
    corecore