94 research outputs found

    Characterization of Prototype Superfluid Helium Safety Relief Valves for the LHC Magnets

    Get PDF
    The Large Hadron Collider (LHC) at CERN will use high field superconducting magnets operating in pressurized superfluid helium (He II) at 1.9 K. Cold safety valves, with their inlet in direct contact with the He II bath, will be required to protect the cold masses in case of a magnet resistive transition. In addition to the safety function, the valves must limit their conduction heat load to the He II to below 0.3 W and limit their mass leakage when closed to below 0.01 g/s at 1.9 K with 100 mbar differential pressure. The valves must also have a high tolerance to contaminating particles in the liquid helium. The compliance with the specified performance is of crucial importance for the LHC cryogenic operation. An extensive test program is therefore being carried out on prototype industrial valves produced by four different manufacturers. The behavior of these valves has been investigated at room temperature and at 77 K. Precise heat load and mass leak measurements have been performed on a dedicated test facility at superfluid helium temperature. Results of cold and warm tests performed on as-delivered valves are presented

    HE II Two Phase Flow in an Inclinable 22 m Long Line

    Get PDF
    In the line of previous work done at CEA Grenoble, large size experiments were performed with the support of CERN for the validation of the LHC two phase superfluid helium cooling scheme. In order to be as close as possible to the real configuration, a straight, inclinable 22 m long line of 40 mm I.D. was built. Very accurate measurements of temperatures and pressures obtained after in situ re-calibration and verified by independent sensors allowed us to validate our two-phase flow model. Although we focus on pressure losses and heat exchange results in relation to power injected, additional measurements such as quality, void fraction, and total mass flow rate enable a complete description of the two-phase flow. Experiments were carried out to cover the whole range of the future LHC He II two-phase flow heat exchanger pipe: slope between 0 and 2.8 %, temperature between 1.8 and 2 K, total mass flow rate up to 7.5 g/s. Results confirm the validity of choice for the LHC cooling scheme

    Cooling Strings of Superconducting Devices below 2 K: the Helium II Bayonet Heat Exchanger

    Get PDF
    High-energy particle accelerators and colliders contain long strings of superconducting devices - acceleration RF cavities and magnets - operating at high field, which may require cooling in helium II below 2 K. In order to maintain adequate operating conditions, the applied or generated heat loads must be extracted and transported with minimum temperature difference. Conventional cooling schemes based on conductive or convective heat transport in pressurized helium II very soon reach their intrinsic limits of thermal impedance over extended lengths. We present the concept of helium II bayonet heat exchanger, which has been developed at CERN for the magnet cooling scheme of the Large Hadron Collider (LHC), and describe its specific advantages as a slim, quasi-isothermal heat sink. Experimental results obtained on several test set-ups, and a prototype magnet string have permitted to validate its performance and sizing rules, for transporting linear heat loads in the W.m-1 range over distances of several tens of meters

    Modelling of Helium-mediated Quench Propagation in the LHC Prototype Test String-1

    Get PDF
    The Large Hadron Collider (LHC) prototype test string-1, hereafter referred to as the string, is composed of three ten-meter long prototype dipole magnets and one six-meter long prototype quadrupole magnet. The magnets are immersed in a pressurized static bath of superfluid helium that is maintained at a pressure of about 1 bar and at a temperature of about 1.9 K. This helium bath constitutes one single hydraulic unit, extending along the 42.5 m of the string length. We have measured the triggering of quenches of the string magnets due to the quenching of a single dipole magnet located at the string's extremity; i.e. "quench propagation". Previously reported measurements enabled to establish that in this configuration the quench propagation is mediated by the helium and not by the inter-magnet busbar connections [1], [2]. We present a model of helium mediated quench propagation based on the qualitative conclusions of these two previous papers, and on additional information gained from a dedicated series of quench propagation measurements that were not previously reported. We will discuss the specific mechanisms and their main parameters involved at different time scales of the propagation process, and apply the model to make quantitative predictions

    Thermohydraulics of Quenches and Helium Recovery in the LHC Magnet Strings

    Get PDF
    In preparation for the Large Hadron Collider project, a 42.5 m-long prototype superconducting magnet string, representing a half-cell of the machine lattice, has been built and operated. A series of tests was performed to assess the thermohydraulics of resistive transitions (quenches) of the superconducting magnets. These measurements provide the necessary foundation for describing the observed evolution of the helium in the cold mass and formulating a mathematical model based on energy conservation. The evolution of helium after a quench simulated with the model reproduces the observations. We then extend the simulations to a full LHC cell, and finally analyse the recovery of helium discharged from the cold mass

    Latest Developments on HeII Co-Current Two-Phase Flow Studies

    Get PDF
    Large scale experiments were performed at CEA Grenoble with the support of CERN to simulate and understand the HeII cooling circuit of the LHC. This paper describes the latest results obtained in HeII co-current two-phase flow configuration. First we summarize thermal and hydraulic behaviour of flows obtained in a 40 mm I.D., 86 m long tube inclined at 1.4% which resembles closely the LHC heat exchanger tube. For low vapour velocities, the flow pattern is found to be stratified. A model based on this observation has been developed which fits very well the measured pressure losses. However the wetted surface predicted by the model underestimates the measured one, notably for high vapour velocities. In that case, liquid droplets entrainment takes place. Droplets landing on the tube wall increase the wetted surface. Thus we infer that for higher vapour velocities, the stratified two-phase flow model should not be applied anymore. In order to validate the range of availability of the model, and begin to draw a flow pattern map, a 20 mm I.D. horizontal test sector was built and experiments were performed. First results are presented here, including the observation of the stratified-annular flow transition

    Test Station for a 30 m long Superconducting Link

    Get PDF
    The Large Hadron Collider (LHC) requires distribution of high electrical currents in the limited space of LHC tunnel. Four superconducting links of about 76 m length and one of 510 m will be installed in the tunnel to carry 6 kA and 600 A. For validation of the longest link a test station was designed which is presently under construction. The design will permit the test station to be adapted for other links and/or cables as well. It will operate either in pool boiling mode, in order to measure thermal loads, or in forced super-critical helium flow mode to simulate real operation. Inlet pressure is 1.2 bar to 3 bar. Inlet temperature is adjustable from 4.4 K up to about 20 K. The station is being prepared to validate the LHC model link, consisting of 48 superconducting cables, each operating at 600 A between 4.5 K and 5.4 K. This article describes features of the equipment

    Operation, Testing and Long Term Behaviour of the LHC Test String Cryogenic System

    Get PDF
    Since the end of 1994 we have been operating a prototype half-cell of the machine lattice, accumulating more than 10,000 hours at superfluid helium temperatures and recovering from 150, mainly provoke d, magnet resistive transitions. The system has confirmed the validity of the basic design choices of the LHC cryogenic system. Furthermore, extensive testing on the response of the system to current ramp and discharge, and to magnet resistive transition, has provided sufficient information to enable a simplification of the cryogenic scheme that fulfils the LHC requirements. We report on the cryog enic operation, testing and long-term behaviour of the LHC Test String during the last 4 years of operation
    • …
    corecore