947 research outputs found

    Brain Responses to Faces and Facial Expressions in 5-Month-Olds: An fNIRS Study

    Get PDF
    Processing faces and understanding facial expressions are crucial skills for social communication. In adults, basic face processing and facial emotion processing rely on specific interacting brain networks. In infancy, however, little is known about when and how these networks develop. The current study uses functional near-infrared spectroscopy (fNIRS) to measure differences in 5-month-olds’ brain activity in response to fearful and happy facial expressions. Our results show that the right occipital region responds to faces, indicating that the face processing network is activated at 5 months. Yet sensitivity to facial emotions appears to be still immature at this age: explorative analyses suggest that if the facial emotion processing network was active this would be mainly visible in the temporal cortex. Together these results indicate that at 5 months, occipital areas already show sensitivity to face processing, while the facial emotion processing network seems not fully developed

    Independent position correction on tumor and lymph nodes; consequences for bladder cancer irradiation with two combined IMRT plans

    Get PDF
    Abstract Background The application of lipiodol injections as markers around bladder tumors combined with the use of CBCT for image guidance enables daily on-line position correction based on the position of the bladder tumor. However, this might introduce the risk of underdosing the pelvic lymph nodes. In this study several correction strategies were compared. Methods For this study set-up errors and tumor displacements for ten complete treatments were generated; both were based on the data of 10 bladder cancer patients. Besides, two IMRT plans were made for 20 patients, one for the elective field and a boost plan for the tumor. For each patient 10 complete treatments were simulated. For each treatment the dose was calculated without position correction (option 1), correction on bony anatomy (option 2), on tumor only (option 3) and separately on bone for the elective field (option 4). For each method we analyzed the D99% for the tumor, bladder and lymph nodes and the V95% for the small intestines, rectum, healthy part of the bladder and femoral heads. Results CTV coverage was significantly lower with options 1 and 2. With option 3 the tumor coverage was not significantly different from the treatment plan. The ΔD99% (D99%, option n - D99%, treatment plan) for option 4 was small, but significant. For the lymph nodes the results from option 1 differed not significantly from the treatment plan. The median ΔD99% of the other options were small, but significant. ΔD99% for PTVbladder was small for options 1, 2 and 4, but decreased up to -8.5 Gy when option 3 was applied. Option 4 is the only method where the difference with the treatment plan never exceeds 2 Gy. The V95% for the rectum, femoral heads and small intestines was small in the treatment plan and this remained so after applying the correction options, indicating that no additional hot spots occurred. Conclusions Applying independent position correction on bone for the elective field and on tumor for the boost separately gives on average the best target coverage, without introducing additional hot spots in the healthy tissue.</p

    The zebrafish mutants dre, uki, and lep encode negative regulators of the hedgehog signaling pathway.

    Get PDF
    Proliferation is one of the basic processes that control embryogenesis. To identify factors involved in the regulation of proliferation, we performed a zebrafish genetic screen in which we used proliferating cell nuclear antigen (PCNA) expression as a readout. Two mutants, hu418B and hu540A, show increased PCNA expression. Morphologically both mutants resembled the dre (dreumes), uki (ukkie), and lep (leprechaun) mutant class and both are shown to be additional uki alleles. Surprisingly, although an increased size is detected of multiple structures in these mutant embryos, adults become dwarfs. We show that these mutations disrupt repressors of the Hedgehog (Hh) signaling pathway. The dre, uki, and lep loci encode Su(fu) (suppressor of fused), Hip (Hedgehog interacting protein), and Ptc2 (Patched2) proteins, respectively. This class of mutants is therefore unique compared to previously described Hh mutants from zebrafish genetic screens, which mainly show loss of Hh signaling. Furthermore, su(fu) and ptc2 mutants have not been described in vertebrate model systems before. Inhibiting Hh activity by cyclopamine rescues uki and lep mutants and confirms the overactivation of the Hh signaling pathway in these mutants. Triple uki/dre/lep mutants show neither an additive increase in PCNA expression nor enhanced embryonic phenotypes, suggesting that other negative regulators, possibly Ptc1, prevent further activation of the Hh signaling pathway. The effects of increased Hh signaling resulting from the genetic alterations in the uki, dre, and lep mutants differ from phenotypes described as a result of Hh overexpression and therefore provide additional insight into the role of Hh signaling during vertebrate development
    corecore