1,119,700 research outputs found

    Universal behavior of CePd1xRhx\rm CePd_{1-x}Rh_x Ferromagnet at Quantum Critical Point

    Full text link
    The heavy-fermion metal CePd1xRhx\rm CePd_{1-x}Rh_x can be tuned from ferromagnetism at x=0x=0 to non-magnetic state at some critical concentration xcx_c. The non-Fermi liquid behavior (NFL) at xxcx\simeq x_c is recognized by power low dependence of the specific heat C(T)C(T) given by the electronic contribution, magnetic susceptibility χ(T)\chi(T) and volume expansion coefficient α(T)\alpha(T) at low temperatures: C/Tχ(T)α(T)/T1/TC/T\propto\chi(T)\propto\alpha(T)/T\propto1/\sqrt{T}. We also demonstrate that the behavior of normalized effective mass MNM^*_N observed in CePd1xRhx\rm CePd_{1-x}Rh_x at x0.8x\simeq 0.8 agrees with that of MNM^*_N observed in paramagnetic CeRu2Si2\rm CeRu_2Si_2 and conclude that these alloys exhibit the universal NFL thermodynamic behavior at their quantum critical points. We show that the NFL behavior of CePd1xRhx\rm CePd_{1-x}Rh_x can be accounted for within frameworks of quasiparticle picture and fermion condensation quantum phase transition, while this alloy exhibits a universal thermodynamic NFL behavior which is independent of the characteristic features of the given alloy such as its lattice structure, magnetic ground state, dimension etc.Comment: 5 pages, 3 figure

    Correlation femtoscopy of small systems

    Full text link
    The basic principles of the correlation femtoscopy, including its correspondence to the Hanbury Brown and Twiss intensity interferometry, are re-examined. The main subject of the paper is an analysis of the correlation femtoscopy when the source size is as small as the order of the uncertainty limit. It is about 1 fm for the current high energy experiments. Then the standard femtoscopy model of random sources is inapplicable. The uncertainty principle leads to the partial indistinguishability and coherence of closely located emitters that affect the observed femtoscopy scales. In thermal systems the role of corresponding coherent length is taken by the thermal de Broglie wavelength that also defines the size of a single emitter. The formalism of partially coherent phases in the amplitudes of closely located individual emitters is used for the quantitative analysis. The general approach is illustrated analytically for the case of the Gaussian approximation for emitting sources. A reduction of the interferometry radii and a suppression of the Bose-Einstein correlation functions for small sources due to the uncertainty principle are found. There is a positive correlation between the source size and the intercept of the correlation function. The peculiarities of the non-femtoscopic correlations caused by minijets and fluctuations of the initial states of the systems formed in pppp and e+ee^+e^- collisions are also analyzed. The factorization property for the contributions of femtoscopic and non-femtoscopic correlations into complete correlation function is observed in numerical calculations in a wide range of the model parameters.Comment: 34 pages, 5 figures. In the version 4 some stylistic improvements were made, some misprints were corrected. The results and conclusions are not change

    Different Facets of Chaos in Quantum Mechanics

    Full text link
    Nowadays there is no universally accepted definition of quantum chaos. In this paper we review and critically discuss different approaches to the subject, such as Quantum Chaology and the Random Matrix Theory. Then we analyze the problem of dynamical chaos and the time scales associated with chaos suppression in quantum mechanics. Summary: 1. Introduction 2. Quantum Chaology and Spectral Statistics 3. From Poisson to GOE Transition: Comparison with Experimental Data 3.1 Atomic Nuclei 3.2 The Hydrogen Atom in the Strong Magnetic Field 4. Quantum Chaos and Field Theory 5. Alternative Approaches to Quantum Chaos 6. Dynamical Quantum Chaos and Time Scales 6.1 Mean-Field Approximation and Dynamical Chaos 7. ConclusionsComment: RevTex, 25 pages, 7 postscript figures, to be published in Int. J. Mod. Phys.

    Star-Triangle Relation for a Three Dimensional Model

    Full text link
    The solvable sl(n)sl(n)-chiral Potts model can be interpreted as a three-dimensional lattice model with local interactions. To within a minor modification of the boundary conditions it is an Ising type model on the body centered cubic lattice with two- and three-spin interactions. The corresponding local Boltzmann weights obey a number of simple relations, including a restricted star-triangle relation, which is a modified version of the well-known star-triangle relation appearing in two-dimensional models. We show that these relations lead to remarkable symmetry properties of the Boltzmann weight function of an elementary cube of the lattice, related to spatial symmetry group of the cubic lattice. These symmetry properties allow one to prove the commutativity of the row-to-row transfer matrices, bypassing the tetrahedron relation. The partition function per site for the infinite lattice is calculated exactly.Comment: 20 pages, plain TeX, 3 figures, SMS-079-92/MRR-020-92. (corrupted figures replaced

    The vertex formulation of the Bazhanov-Baxter Model

    Full text link
    In this paper we formulate an integrable model on the simple cubic lattice. The NN -- valued spin variables of the model belong to edges of the lattice. The Boltzmann weights of the model obey the vertex type Tetrahedron Equation. In the thermodynamic limit our model is equivalent to the Bazhanov -- Baxter Model. In the case when N=2N=2 we reproduce the Korepanov's and Hietarinta's solutions of the Tetrahedron equation as some special cases.Comment: 20 pages, LaTeX fil

    Nonperiodic Orbit Sums in Weyl's Expansion for Billiards

    Get PDF
    Weyl's expansion for the asymptotic mode density of billiards consists of the area, length, curvature and corner terms. The area term has been associated with the so-called zero-length orbits. Here closed nonperiodic paths corresponding to the length and corner terms are constructed.Comment: 8 pages, 2 figure
    corecore