21,063 research outputs found

    Comment on ``Effective Mass and g-Factor of Four Flux Quanta Composite Fermions"

    Full text link
    In a recent Letter, Yeh et al.[Phys. Rev. Lett. 82, 592 (1999)] have shown beautiful experimental results which indicate that the composite fermions with four flux quanta (4^4CF) behave as fermions with mass and spin just like those with two flux quanta. They observed the collapse of the fractional quantum Hall gaps when the following condition is satisfied with some integer jj, gμBBtot=jωcg^*\mu_{\rm B}B_{\rm tot} = j \hbar \omega_{\rm c}^*, where gg^* and ωc\omega_{\rm c}^* are the g-factor and the cyclotron frequency of the 4^4CF, respectively. However, in their picture the gap at the Fermi energy remains always finite even if the above condition is satisfied, thus the reason of the collapse was left as a mystery. In this comment it is shown that part of the mystery is resolved by considering the electron-hole symmetry properly.Comment: 2 pages, RevTeX. Minor chang

    Method of Fabricating Schottky Barrier solar cell

    Get PDF
    On a thin substrate of low cost material with at least the top surface of the substrate being electrically conductive is deposited a thin layer of heavily doped n-type polycrystalline germanium, with crystalline sizes in the submicron range. A passivation layer may be deposited on the substrate to prevent migration of impurities into the polycrystalline germanium. The polycrystalline germanium is recrystallized to increase the crystal sizes in the germanium layer to not less than 5 micros to serve as a base layer on which a thin layer of gallium arsenide is vapor epitaxially grown to a selected thickness. A thermally-grown oxide layer of a thickness of several tens of angstroms is formed on the gallium arsenide layer. A metal layer, of not more about 100 angstroms thick, is deposited on the oxide layer, and a grid electrode is deposited to be in electrical contact with the top surface of the metal layer. An antireflection coating may be deposited on the exposed top surface of the metal layer

    Schottky barrier solar cell

    Get PDF
    A method of fabricating a Schottky barrier solar cell is described. The cell consists of a thin substrate of low cost material with at least the top surface of the substrate being electrically conductive. A thin layer of heavily doped n-type polycrystalling germanium is deposited on the substrate after a passivation layer is deposited to prevent migration of impurities into the polycrystalline germanium. The polycrystalline germanium is recrystallized to increase the crystal sizes to serve as a base layer on which a thin layer of gallium arsenide is vapor-epitaxilly grown followed by a thermally-grown oxide layer. A metal layer is deposited on the oxide layer and a grid electrode is deposited to be in electrical contact with the top surface of the metal layer

    Turbulence modeling and surface heat transfer in a stagnation flow region

    Get PDF
    Analysis for the turbulent flow field and the effect of freestream turbulence on the surface heat transfer rate of a stagnation flow is presented. The emphasis is on modeling and its augmentation of surface heat transfer rate. The flow field considered is the region near the forward stagnation point of a circular cylinder in a uniform turbulent mean flow

    Noise removal in multichannel images

    Get PDF
    A adaptive filtering method, the Windrow-Hoff algorithm, for enhancing multichannel signals against aditive noise was investigated. It removes noise for multichannel images containing correlated signal compoments but uncorrelated noise components. Its potential application is the enhancement of multichannel microwave satellite images as a preprocessing step for the extraction of geophysical parameters

    Scintillation observations of satellite signals

    Get PDF
    Scintillation observations of satellite signal

    Response of Ionospheric Electron Density to a Change of Electron Temperature

    Get PDF
    Spatial and temporal models used to study response of ionospheric electron density to change of electron temperatur

    Application of turbulence modeling to predict surface heat transfer in stagnation flow region of circular cylinder

    Get PDF
    A theoretical analysis and numerical calculations for the turbulent flow field and for the effect of free-stream turbulence on the surface heat transfer rate of a stagnation flow are presented. The emphasis is on the modeling of turbulence and its augmentation of surface heat transfer rate. The flow field considered is the region near the forward stagnation point of a circular cylinder in a uniform turbulent mean flow. The free stream is steady and incompressible with a Reynolds number of the order of 10 to the 5th power and turbulence intensity of less than 5 percent. For this analysis, the flow field is divided into three regions: (1) a uniform free-stream region where the turbulence is homogeneous and isotropic; (2) an external viscid flow region where the turbulence is distorted by the variation of the mean flow velocity; and, (3) an anisotropic turbulent boundary layer region over the cylinder surface. The turbulence modeling techniques used are the kappa-epsilon two-equation model in the external flow region and the time-averaged turbulence transport equation in the boundary layer region. The turbulence double correlations, the mean velocity, and the mean temperature within the boundary layer are solved numerically from the transport equations. The surface heat transfer rate is calculated as functions of the free-stream turbulence longitudinal microlength scale, the turbulence intensity, and the Reynolds number

    Spin-polarized tunneling spectroscopic studies of the intrinsic heterogeneity and pseudogap phenomena in colossal magnetoresistive manganite La_{0.7}Ca_{0.3}MnO_{3}

    Get PDF
    Spatially resolved tunneling spectroscopic studies of colossal magnetoresistive (CMR) manganite La0.7Ca0.3MnO3\rm La_{0.7}Ca_{0.3}MnO_3 (LCMO) epitaxial films on (LaAlO3)0.3(Sr2AlTaO6)0.7\rm (LaAlO_3)_{0.3}(Sr_2AlTaO_6)_{0.7} substrate are investigated as functions of temperature, magnetic field and spin polarization by means of scanning tunneling spectroscopy. Systematic surveys of the tunneling spectra taken with Pt/Ir tips reveal spatial variations on the length scale of a few hundred nanometers in the ferromagnetic state, which may be attributed to the intrinsic heterogeneity of the manganites due to their tendency towards phase separation. The electronic heterogeneity is found to decrease either with increasing field at low temperatures or at temperatures above all magnetic ordering temperatures. On the other hand, spectra taken with Cr-coated tips are consistent with convoluted electronic properties of both LCMO and Cr. In particular, for temperatures below the magnetic ordering temperatures of both Cr and LCMO, the magnetic-field dependent tunneling spectra may be quantitatively explained by the scenario of spin-polarized tunneling in a spin-valve configuration. Moreover, a low-energy insulating energy gap 0.6\sim 0.6 eV commonly found in the tunneling conductance spectra of bulk metallic LCMO at T0T \to 0 may be attributed to a surface ferromagnetic insulating (FI) phase, as evidenced by its spin filtering effect at low temperatures and vanishing gap value above the Curie temperature. Additionally, temperature independent pseudogap (PG) phenomena existing primarily along the boundaries of magnetic domains are observed in the zero-field tunneling spectra. The PG becomes strongly suppressed by applied magnetic fields at low temperatures when the tunneling spectra of LCMO become highly homogeneous. These findings suggest that the occurrence PG is associated with the electronic heterogeneity of the manganites.Comment: 15 pages, 15 figures. Published in Physical Review B. Corresponding author: Nai-Chang Yeh (E-mail: [email protected]

    A methodology for unified hardware-software design

    Get PDF
    Unified hardware-software design for digital computer
    corecore