23,585 research outputs found

    Kaehler Manifolds of Quasi-Constant Holomorphic Sectional Curvatures

    Full text link
    The Kaehler manifolds of quasi-constant holomorphic sectional curvatures are introduced as Kaehler manifolds with complex distribution of codimension two, whose holomorphic sectional curvature only depends on the corresponding point and the geometric angle, associated with the section. A curvature identity characterizing such manifolds is found. The biconformal group of transformations whose elements transform Kaehler metrics into Kaehler ones is introduced and biconformal tensor invariants are obtained. This makes it possible to classify the manifolds under consideration locally. The class of locally biconformal flat Kaehler metrics is shown to be exactly the class of Kaehler metrics whose potential function is only a function of the distance from the origin in complex Euclidean space. Finally we show that any rotational even dimensional hypersurface carries locally a natural Kaehler structure, which is of quasi-constant holomorphic sectional curvatures.Comment: 36 page

    Control spiral wave dynamics using feedback signals from line detectors

    Full text link
    We numerically study trajectories of spiral-wave-cores in excitable systems modulated proportionally to the integral of the activity on the straight line, several or dozens of equi-spaced measuring points on the straight line, the double-line and the contour-line. We show the single-line feedback results in the drift of core center along a straight line being parallel to the detector. An interesting finding is that the drift location in yy is a piecewise linear-increasing function of both the feedback line location and time delay. Similar trajectory occurs when replacing the feedback line with several or dozens of equi-spaced measuring points on the straight line. This allows to move the spiral core to the desired location along a chosen direction by measuring several or dozens of points. Under the double-line feedback, the shape of the tip trajectory representing the competition between the first and second feedback lines is determined by the distance of two lines. Various drift attractors in spiral wave controlled by square-shaped contour-line feedback are also investigated. A brief explanation is presented.Comment: 6 pages and 7 figures; Accepted for publication in EPL; Figs.5 and 6 are in JPG forma

    H55N polymorphism is associated with low citrate synthase activity which regulates lipid metabolism in mouse muscle cells

    Get PDF
    Funding: This work was supported, in whole or in part, by European Social Fund under the Global Grant measure Grant VP1-3.1-Å MM-07-K-02-057 (to A.L.), European Foundation for the Study of Diabetes grant (to T.V.), NHS Grampian Endowment grant (to A.R. and S.R.G.), Kuwait Ministry of Health grant (to M.A.), Saudi Ministry of Higher Education grant (to Y.A.,) as well as Saltire scholarship, Wenner-Gren Foundation Postdoctoral Fellowship, Albert Renold Travel Fellowship and a Novo Nordisk Foundation Challenge Grant (to B.G.).Peer reviewedPublisher PD

    Beating patterns of filaments in viscoelastic fluids

    Full text link
    Many swimming microorganisms, such as bacteria and sperm, use flexible flagella to move through viscoelastic media in their natural environments. In this paper we address the effects a viscoelastic fluid has on the motion and beating patterns of elastic filaments. We treat both a passive filament which is actuated at one end, and an active filament with bending forces arising from internal motors distributed along its length. We describe how viscoelasticity modifies the hydrodynamic forces exerted on the filaments, and how these modified forces affect the beating patterns. We show how high viscosity of purely viscous or viscoelastic solutions can lead to the experimentally observed beating patterns of sperm flagella, in which motion is concentrated at the distal end of the flagella

    The Molonglo Galactic Plane Survey: I. Overview and Images

    Full text link
    The first epoch Molonglo Galactic Plane Survey (MGPS1) is a radio continuum survey made using the Molonglo Observatory Synthesis Telescope (MOST) at 843 MHz with a resolution of 43" X 43" cosec |delta|. The region surveyed is 245 deg < l < 355 deg, |b| < 1.5 deg. The thirteen 9 deg X 3 deg mosaic images presented here are the superposition of over 450 complete synthesis observations, each taking 12 h and covering 70' X 70' cosec |delta|. The root-mean-square sensitivity over much of the mosaiced survey is 1-2 mJy/beam (1 sigma), and the positional accuracy is approximately 1" X 1" cosec |delta| for sources brighter than 20 mJy. The dynamic range is no better than 250:1, and this also constrains the sensitivity in some parts of the images. The survey area of 330 sq deg contains well over 12,000 unresolved or barely resolved objects, almost all of which are extra-galactic sources lying in the Zone of Avoidance. In addition a significant fraction of this area is covered by extended, diffuse emission associated with thermal complexes, discrete H II regions, supernova remnants, and other structures in the Galactic interstellar medium.Comment: Paper with 3 figures and 1 table + Table 2 + 7 jpg grayscales for Fig 4. Astrophysical Journal Supplement (in press) see also http://www.astrop.physics.usyd.edu.au/MGP

    Numerical Algebraic Geometry: A New Perspective on String and Gauge Theories

    Get PDF
    The interplay rich between algebraic geometry and string and gauge theories has recently been immensely aided by advances in computational algebra. However, these symbolic (Gr\"{o}bner) methods are severely limited by algorithmic issues such as exponential space complexity and being highly sequential. In this paper, we introduce a novel paradigm of numerical algebraic geometry which in a plethora of situations overcomes these short-comings. Its so-called 'embarrassing parallelizability' allows us to solve many problems and extract physical information which elude the symbolic methods. We describe the method and then use it to solve various problems arising from physics which could not be otherwise solved.Comment: 36 page

    Absolute physical calibration in the infrared

    Get PDF
    We determine an absolute calibration for the Multiband Imaging Photometer for Spitzer 24 Ī¼m band and recommend adjustments to the published calibrations for Two Micron All Sky Survey (2MASS), Infrared Array Camera (IRAC), and IRAS photometry to put them on the same scale. We show that consistent results are obtained by basing the calibration on either an average A0V star spectral energy distribution (SED), or by using the absolutely calibrated SED of the Sun in comparison with solar-type stellar photometry (the solar analog method). After the rejection of a small number of stars with anomalous SEDs (or bad measurements), upper limits of ~1.5% root mean square (rms) are placed on the intrinsic infrared (IR) SED variations in both A-dwarf and solar-type stars. These types of stars are therefore suitable as general-purpose standard stars in the IR. We provide absolutely calibrated SEDs for a standard zero magnitude A star and for the Sun to allow extending this work to any other IR photometric system. They allow the recommended calibration to be applied from 1 to 25 Ī¼m with an accuracy of ~2%, and with even higher accuracy at specific wavelengths such as 2.2, 10.6, and 24 Ī¼m, near which there are direct measurements. However, we confirm earlier indications that Vega does not behave as a typical A0V star between the visible and the IR, making it problematic as the defining star for photometric systems. The integration of measurements of the Sun with those of solar-type stars also provides an accurate estimate of the solar SED from 1 through 30 Ī¼m, which we show agrees with theoretical models

    Testing R-parity with geometry

    Get PDF
    We present a complete classification of the vacuum geometries of all renormalizable superpotentials built from the fields of the electroweak sector of the MSSM. In addition to the Severi and affine Calabi-Yau varieties previously found, new vacuum manifolds are identified; we thereby investigate the geometrical implication of theories which display a manifest matter parity (or R-parity) via the distinction between leptonic and Higgs doublets, and of the lepton number assignment of the right-handed neutrino fields. We find that the traditional R-parity assignments of the MSSM more readily accommodate the neutrino see-saw mechanism with non-trivial geometry than those superpotentials that violate R-parity. However there appears to be no geometrical preference for a fundamental Higgs bilinear in the superpotential, with operators that violate lepton number, such as Ī½HHĀÆ, generating vacuum moduli spaces equivalent to those with a fundamental bilinear
    • ā€¦
    corecore