571 research outputs found

    A re-analysis of the spectrum of 2206-199

    Get PDF
    Recently Pettini, Hunstead, Smith and Mar, (PHSM 1991) performed an analysis of the Ly-alpha forest of QSO 2206-199N at very high resolution. On the basis of their observations they concluded that most Doppler parameters b = (square root of 2)(sigma) of Ly-alpha forest lines are below 22 km/s, with a range down to a few km/s and a median of 17 km/s. They also found a strong intrinsic correlation between Doppler parameter b and column density N. These results are in contrast to those of a similar study by Carswell, Lanzetta, Parnell, and Webb (CLPW 1991) at comparable resolution with the same instruments, who find that most of the Ly-alpha lines towards QSO 1100-264 have Doppler parameters above 15 km/s (median b = 34 km/s), and that there is no significant correlation between b and N. Whilst an intrinsic difference between the lines of sight to 2206-199 and to other QSO's can not be excluded a priori, previous disagreement between Doppler parameter estimates obtained by both groups pointed to a potential difference in estimation techniques and in the interpretation of the results. To investigate this possibility, the AAT/UCLES spectrum of 2206-199 obtained by PHSM were reanalyzed. The spectrum was extracted from the raw data and determined the line parameters using the method described by CLPW

    The Local Lyman-Alpha Forest: Absorbers in Galaxy Voids

    Full text link
    We have conducted pointed redshift surveys for galaxies in the direction of bright AGN whose HST far-UV spectra contain nearby (cz <~ 30,000 kms), low column density (12.5 <= log N_{HI} (cm s^{-2}) <= 14.5) Ly-alpha forest absorption systems. Here we present results for four lines-of-sight which contain nearby (cz <~ 3000 kms) Ly-alpha absorbers in galaxy voids. Although our data go quite deep (-13 <= M_{B}(limit) <= -14) out to impact parameters of 100-250 h_{70}^{-1} kpc, these absorbers remain isolated and thus appear to be truly intergalactic, rather than part of galaxies or their halos. Since we and others have discovered no galaxies in voids, the only baryons detected in the voids are in the Ly-alpha ``clouds''. Using a photoionization model for these clouds, the total baryonic content of the voids is 4.5% +/- 1.5% of the mean baryon density.Comment: 5 pages, 1 figure, accepted for publication in Astrophysical Journal Letter

    Thermal broadening of the Coulomb blockade peaks in quantum Hall interferometers

    Full text link
    We demonstrate that the differential magnetic susceptibility of a fractional quantum Hall disk, representing a Coulomb island in a Fabry--Perot interferometer, is exactly proportional to the island's conductance and its paramagnetic peaks are the equilibrium counterparts of the Coulomb blockade conductance peaks. Using as a thermodynamic potential the partition functions of the edge states' effective conformal field theory we find the positions of the Coulomb blockade peaks, when the area of the island is varied, the modulations of the distance between them as well as the thermal decay and broadening of the peaks when temperature is increased. The finite-temperature estimates of the peak's heights and widths could give important information about the experimental observability of the Coulomb blockade. In addition, the predicted peak asymmetry and displacement at finite temperature due to neutral multiplicities could serve to distinguish different fractional quantum Hall states with similar zero-temperature Coulomb blockade patterns.Comment: 6 pages, 6 figures; published versio

    Underscreened Kondo effect in S=1 magnetic quantum dots: Exchange, anisotropy and temperature effects

    Get PDF
    We present a theoretical analysis of the effects of uniaxial magnetic anisotropy and contact-induced exchange field on the underscreened Kondo effect in S=1 magnetic quantum dots coupled to ferromagnetic leads. First, by using the second-order perturbation theory we show that the coupling to spin-polarized electrode results in an effective exchange field BeffB_{\rm eff} and an effective magnetic anisotropy DeffD_{\rm eff}. Second, we confirm these findings by using the numerical renormalization group method, which is employed to study the dependence of the quantum dot spectral functions, as well as quantum dot spin, on various parameters of the system. We show that the underscreened Kondo effect is generally suppressed due to the presence of effective exchange field and can be restored by tuning the anisotropy constant, when Deff=Beff|D_{\rm eff}| = |B_{\rm eff}|. The Kondo effect can also be restored by sweeping an external magnetic field, and the restoration occurs twice in a single sweep. From the distance between the restored Kondo resonances one can extract the information about both the exchange field and the effective anisotropy. Finally, we calculate the temperature dependence of linear conductance for the parameters where the Kondo effect is restored and show that the restored Kondo resonances display a universal scaling of S=1/2S=1/2 Kondo effect.Comment: 13 pages, 9 figures (version as accepted for publication in Physical Review B

    Transport through single-wall metallic carbon nanotubes in the cotunneling regime

    Full text link
    Using the real-time diagrammatic technique and taking into account both the sequential and cotunneling processes, we analyze the transport properties of single-wall metallic carbon nanotubes coupled to nonmagnetic and ferromagnetic leads in the full range of parameters. In particular, considering the two different shell filling schemes of the nanotubes, we discuss the behavior of the differential conductance, tunnel magnetoresistance and the shot noise. We show that in the Coulomb diamonds corresponding to even occupations, the shot noise becomes super-Poissonian due to bunching of fast tunneling processes resulting from the dynamical channel blockade, whereas in the other diamonds the noise is roughly Poissonian, in agreement with recent experiments. The tunnel magnetoresistance is very sensitive to the number of electrons in the nanotube and exhibits a distinctively different behavior depending on the shell filling sequence of the nanotube.Comment: 7 pages, 6 figure

    Spin-polarized transport through weakly coupled double quantum dots in the Coulomb-blockade regime

    Full text link
    We analyze cotunneling transport through two quantum dots in series weakly coupled to external ferromagnetic leads. In the Coulomb blockade regime the electric current flows due to third-order tunneling, while the second-order single-barrier processes have indirect impact on the current by changing the occupation probabilities of the double dot system. We predict a zero-bias maximum in the differential conductance, whose magnitude is conditioned by the value of the inter-dot Coulomb interaction. This maximum is present in both magnetic configurations of the system and results from asymmetry in cotunneling through different virtual states. Furthermore, we show that tunnel magnetoresistance exhibits a distinctively different behavior depending on temperature, being rather independent of the value of inter-dot correlation. Moreover, we find negative TMR in some range of the bias voltage.Comment: 9 pages, 7 figures, accepted in Phys. Rev.

    High resolution study of associated C IV absorption systems in NGC 5548

    Get PDF
    We present the results of a careful analysis of associated absorption systems toward NGC 5548. Most of the well resolved narrow components in the associated system, defined by the Lyman alpha, C IV and N V profiles, show velocity separation similar (to within 10~\kms) to the C IV doublet splitting. We estimate the chance probability of occurrence of such pairs with velocity separation equal to C IV doublet splitting to be 6×1036\times10^{-3}. Thus it is more likely that most of the narrow components are line-locked with C IV doublet splitting. This will mean that the radiative acceleration plays an important role in the kinematics of the absorbing clouds. We build grids of photoionization models and estimate the radiative acceleration due to all possible bound-bound transitions. We show that the clouds producing absorption have densities less than 109cm310^9 cm^{-3}, and are in the outer regions of the broad emission line region (BLR). We note that the clouds which are line-locked cannot produce appreciable optical depths of O VII and O VIII, and hence cannot be responsible for the observed ionized edges, in the soft X-ray. We discuss the implications of the presence of optically thin clouds in the outer regions of the BLR to the models of broad emission lines.Comment: 21 pages, latex (aasms4 style), incluedes 4 ps figures. To appear in Astrophysical Journa
    corecore