140 research outputs found
Miocene waterfowl and other birds from central Otago, New Zealand
Copyright © The Natural History Museum 2007Abundant fossil bird bones from the lower Bannockburn Formation, Manuherikia Group, an Early-Middle Miocene lacustrine deposit, 16–19 Ma, from Otago in New Zealand, reveal the “St Bathans Fauna” (new name), a first Tertiary avifauna of land and freshwater birds from New Zealand. At least 23 species of birds are represented by bones, and probable moa, Aves: Dinornithiformes, by eggshell. Anatids dominate the fauna with four genera and five species described as new: a sixth and largest anatid species is represented by just one bone. This is the most diverse Early-Middle Miocene duck fauna known worldwide. Among ducks, two species of dendrochenines are most numerous in the fauna, but a tadornine is common as well. A diving petrel (Pelecanoididae: Pelecanoides) is described, so extending the geological range of this genus worldwide from the Pliocene to the Middle Miocene, at least. The remaining 16 taxa are left undescribed but include: a large species of gull (Laridae); two small waders (Charadriiformes, genus indet.), the size of Charadrius bicinctus and Calidris ruficollis, respectively; a gruiform represented by one specimen similar to Aptornis; abundant rail (Rallidae) bones, including a common flightless rail and a rarer slightly larger taxon, about the size of Gallirallus philippensis; an ?eagle (Accipitridae); a pigeon (Columbidae); three parrots (Psittacidae); an owlet nightjar (Aegothelidae: Aegotheles sp.); a swiftlet (Apodidae: Collocalia sp.); and three passerine taxa, of which the largest is a member of the Cracticidae. The absence of some waterbirds, such as anserines (including swans), grebes (Podicipedidae) and shags (Phalacrocoracidae), among the abundant bones, indicates their probable absence from New Zealand in the Early-Middle Miocene.T. H. Worthy, A. J. D. Tennyson, C. Jones, J. A. McNamara and B. J. Dougla
Molecular and cellular mechanisms underlying the evolution of form and function in the amniote jaw.
The amniote jaw complex is a remarkable amalgamation of derivatives from distinct embryonic cell lineages. During development, the cells in these lineages experience concerted movements, migrations, and signaling interactions that take them from their initial origins to their final destinations and imbue their derivatives with aspects of form including their axial orientation, anatomical identity, size, and shape. Perturbations along the way can produce defects and disease, but also generate the variation necessary for jaw evolution and adaptation. We focus on molecular and cellular mechanisms that regulate form in the amniote jaw complex, and that enable structural and functional integration. Special emphasis is placed on the role of cranial neural crest mesenchyme (NCM) during the species-specific patterning of bone, cartilage, tendon, muscle, and other jaw tissues. We also address the effects of biomechanical forces during jaw development and discuss ways in which certain molecular and cellular responses add adaptive and evolutionary plasticity to jaw morphology. Overall, we highlight how variation in molecular and cellular programs can promote the phenomenal diversity and functional morphology achieved during amniote jaw evolution or lead to the range of jaw defects and disease that affect the human condition
Contributions to Avian Paleontology
Volume: 30Start Page: 29End Page: 3
Anatomical and Other Notes on the Passenger Pigeon (Ectopistes migratorius) Lately Living in the Cincinnati Zo\uf6logical Gardens
Volume: 32Start Page: 29End Page: 4
- …