8,895 research outputs found

    Earthquake-induced ground failures in Italy from a reviewed database

    Get PDF
    Abstract. A database (Italian acronym CEDIT) of earthquake-induced ground failures in Italy is presented, and the related content is analysed. The catalogue collects data regarding landslides, liquefaction, ground cracks, surface faulting and ground changes triggered by earthquakes of Mercalli epicentral intensity 8 or greater that occurred in the last millennium in Italy. As of January 2013, the CEDIT database has been available online for public use (http://www.ceri.uniroma1.it/cn/gis.jsp ) and is presently hosted by the website of the Research Centre for Geological Risks (CERI) of the Sapienza University of Rome. Summary statistics of the database content indicate that 14% of the Italian municipalities have experienced at least one earthquake-induced ground failure and that landslides are the most common ground effects (approximately 45%), followed by ground cracks (32%) and liquefaction (18%). The relationships between ground effects and earthquake parameters such as seismic source energy (earthquake magnitude and epicentral intensity), local conditions (site intensity) and source-to-site distances are also analysed. The analysis indicates that liquefaction, surface faulting and ground changes are much more dependent on the earthquake source energy (i.e. magnitude) than landslides and ground cracks. In contrast, the latter effects are triggered at lower site intensities and greater epicentral distances than the other environmental effects

    The Structure of Isothermal, Self-gravitating Gas Spheres for Softened Gravity

    Full text link
    A theory for the structure of isothermal, self-gravitating gas spheres in pressure equilibrium in a softened gravitational field is developed. The one parameter spline softening proposed by Hernquist & Katz (1989) is used. We show that the addition of this extra scale parameter implies that the set of equilibrium solutions constitute a one-parameter family, rather than the one and only one isothermal sphere solution for Newtonian gravity. We demonstrate the perhaps somewhat surprising result that for any finite choice of softening length and temperature, it is possible to deposit an arbitrarily large mass of gas in pressure equilibrium and with a non-singular density distribution inside of r_0 for any r_0 > 0. The theoretical predictions of our models are compared with the properties of the small, massive, quasi-isothermal gas clumps which typically form in numerical Tree-SPH simulations of 'passive' galaxy formation of Milky Way sized galaxies. We find reasonable agreement despite the neglect of rotational support in the models. We comment on whether the hydrodynamical resolution in our numerical simulation of galaxy formation is sufficient, and finally we conclude that one should be cautious, when comparing results of numerical simulations involving gravitational softening and hydrodynamical smoothing, with reality.Comment: 22 pages Latex + 12 figure

    Casimir energy and black hole pair creation in Schwarzschild-de Sitter spacetime

    Get PDF
    Following the subtraction procedure for manifolds with boundaries, we calculate by variational methods, the Schwarzschild-de Sitter and the de Sitter space energy difference. By computing the one loop approximation for TT tensors we discover the existence of an unstable mode even for the non-degenerate case. This result seems to be in agreement with the sub-maximal black hole pair creation of Bousso-Hawking. The instability can be eliminated by the boundary reduction method. Implications on a foam-like space are discussed.Comment: 19 pages,RevTeX with package epsf and four eps figures. Added other references. Accepted for publication in Classical and Quantum Gravit

    Facile synthesis of reduced graphene oxide/MWNTs nanocomposite supercapacitor materials tested as electrophoretically deposited films on glassy carbon electrodes

    Get PDF
    This paper reports on a facile synthesis method for reduced graphene oxide (rGO)/multi-walled carbon nanotubes (MWNTs) nanocomposites. The initial step involves the use of graphene oxide to disperse the MWNTs, with subsequent reduction of the resultant graphene oxide/MWNTs composites using l-ascorbic acid (LAA) as a mild reductant. Reduction by LAA preserves the interaction between the rGO sheets and MWNTs. The dispersion-containing rGO/MWNTs composites was characterized and electrophoretically deposited anodically onto glassy carbon electrodes to form high surface area films for capacitance testing. Pseudo capacitance peaks were observed in the rGO/MWNTs composite electrodes, resulting in superior performance with capacitance values up to 134.3 F g−1 recorded. This capacitance value is higher than those observed for LAA-reduced GO (LAA-rGO) (63.5 F g−1), electrochemically reduced GO (EC-rGO) (27.6 F g−1), or electrochemically reduced GO/MWNTs (EC-rGO/MWNTs) (98.4 F g−1)-based electrodes.© 2013, Springer Science+Business Media Dordrecht

    Casimir stress on parallel plates in de Sitter space

    Get PDF
    The Casimir stress on two parallel plates in de Sitter background for massless scalar field satisfying Robin boundary conditions on the plates is calculated. The metric is written in conformally flat form to make maximum use of the Minkowski space calculations. Different cosmological constants are assumed for the space between and outside of the plates to have general results applicable to the case of domain wall formations in the early universe.Comment: 6 page

    Casimir Forces for Robin Scalar Field on Cylindrical Shell in de Sitter Space

    Full text link
    The Casimir stress on a cylinderical shell in background of conformally flat space-time for massless scalar field is investigated. In the general case of Robin (mixed) boundary condition formulae are derived for the vacuum expectation values of the energy-momentum tensor and vacuum forces acting on boundaries. The special case of the dS bulk is considered then different cosmological constants are assumed for the space inside and outside of the shell to have general results applicable to the case of cylindrical domain wall formations in the early universe.Comment: 10 pages, no figur

    Casimir effect for scalar fields with Robin boundary conditions in Schwarzschild background

    Full text link
    The stress tensor of a massless scalar field satisfying Robin boundary conditions on two one-dimensional wall in two-dimensional Schwarzschild background is calculated. We show that vacuum expectation value of stress tensor can be obtained explicitly by Casimir effect, trace anomaly and Hawking radiation.Comment: 10 pages, no figure

    Dynamical Generation of Spacetime Signature by Massive Quantum Fields on a Topologically Non-Trivial Background

    Full text link
    The effective potential for a dynamical Wick field (dynamical signature) induced by the quantum effects of massive fields on a topologically non-trivial DD dimensional background is considered. It is shown that when the radius of the compactified dimension is very small compared with Λ1/2\Lambda^{1/2} (where Λ\Lambda is a proper-time cutoff), a flat metric with Lorentzian signature is preferred on R4×S1{\bf R}^4 \times {\bf S}^1. When the compactification radius becomes larger a careful analysis of the 1-loop effective potential indicates that a Lorentzian signature is preferred in both D=6D=6 and D=4D=4 and that these results are relatively stable under metrical perturbations

    Dynamical Determination of the Metric Signature in Spacetime of Nontrivial Topology

    Full text link
    The formalism of Greensite for treating the spacetime signature as a dynamical degree of freedom induced by quantum fields is considered for spacetimes with nontrivial topology of the kind RD−1×T1{\bf R}^{D-1} \times {\bf T}^1, for varying DD. It is shown that a dynamical origin for the Lorentzian signature is possible in the five-dimensional space R4×T1{\bf R}^4 \times {\bf T}^1 with small torus radius (periodic boundary conditions), as well as in four-dimensional space with trivial topology. Hence, the possibility exists that the early universe might have been of the Kaluza-Klein type, \ie multidimensional and of Lorentzian signature.Comment: 10 pages, LaTeX file, 4 figure

    The evolution of gravitationally unstable protoplanetary disks: fragmentation and possible giant planet formation

    Full text link
    We carry out a large set of very high resolution, three dimensional smoothed particle hydrodynamics (SPH) simulations describing the evolution of gravitationally unstable gaseous protoplanetary disks. We consider a broad range of initial disk parameters. Disk masses out to 20 AU range from 0.075 to 0.125 M⊙M_{\odot}, roughly consistent with the high-end of the mass distribution inferred for disks around T Tauri stars. The initial disks span minimum QQ parameters between 0.8 and 2, with most models being around ∌1.4\sim 1.4. The disks are evolved assuming either a locally isothermal equation of state or an adiabatic equation of state with varying Îł\gamma. When overdensities above a specific threshold appear as a result of gravitational instability in a locally isothermal calculation, the equation of state is switched to adiabatic to account for the increased optical depth. We show that when a disk has a minimum QQ parameter less than 1.4 strong trailing spiral instabilities, typically three or four armed modes, form and grow until fragmentation occurs along the arms after about 5 mean disk orbital times. The resulting clumps contract quickly to densities several orders of magnitude higher than the initial disk density, and the densest of them survive even under adiabatic conditions. These clumps are stable to tidal disruption and merge quickly, leaving 2-3 protoplanets on fairly eccentric orbits (the mean eccentricity being around 0.2) with masses between 0.7 and more than 7MJup7 M_{Jup}, well in agreement with those of detected extrasolar planets.after ∌103\sim 10^3 years. Fragmentation is not strongly dependent on whether the disk starts from a marginally unstable state or gradually achieves it, as shown by a test where the disk gradually achieves the critical QQ by growing in mass.Comment: 48 pages, 18 figures, submitted to ApJ. Abstract considerably reduced, see paper. PostScript file including hi-res figures and movies of the simulations can be dowloaded at http://www.astro.washington.edu/mayer
    • 

    corecore