4,160 research outputs found

    Transcutaneous measurement of volume blood flow

    Get PDF
    Blood flow velocity measurements, using Doppler velocimeter, are described. The ability to measure blood velocity using ultrasound is derived from the Doppler effect; the change in frequency which occurs when sound is reflected or transmitted from a moving target. When ultrasound of the appropriate frequency is transmitted through a moving blood stream, the blood cells act as point scatterers of ultrasonic energy. If this scattered ultrasonic energy is detected, it is found to be shifted in frequency according to the velocity of the blood cells, nu, the frequency of the incident sound, f sub o, the speed of sound in the medium, c, and the angle between the sound beam and the velocity vector, o. The relation describing this effect is known as the Doppler equation. Delta f = 2 f sub o x nu x cos alpha/c. The theoretical and experimental methods are evaluated

    Structure of solutions of the Skyrme model on three-sphere. Numerical results

    Full text link
    The hedgehog Skyrme model on three-sphere admits very rich spectrum of solitonic solutions which can be encompassed by a strikingly simple scheme. The main result of this paper is the statement of the tripartite structure of solutions of the model and the discovery in what configurations these solutions appear. The model contains features of more complicated models in General Relativity and as such can give insight into them.Comment: 20 pages, 13 figures in, with emai

    Development of ultrasonic methods for hemodynamic measurements

    Get PDF
    A transcutanous method to measure instantaneous mean blood flow in peripheral arteries of the human body was defined. Transcutanous and implanted cuff ultrasound velocity measurements were evaluated, and the accuracies of velocity, flow, and diameter measurements were assessed for steady flow. Performance criteria were established for the pulsed Doppler velocity meter (PUDVM), and performance tests were conducted. Several improvements are suggested

    The Infrared Einstein Ring in the Gravitational Lens MG1131+0456 and the Death of the Dusty Lens Hypothesis

    Get PDF
    We have obtained and modeled new NICMOS images of the lens system MG1131+0456, which show that its lens galaxy is an H=18.6 mag, transparent, early-type galaxy at a redshift of about z_l = 0.85; it has a major axis effective radius R_e=0.68+/-0.05 arcsec, projected axis ratio b/a=0.77+/-0.02, and major axis PA=60+/-2 degrees. The lens is the brightest member of a group of seven galaxies with similar R-I and I-H colors, and the two closest group members produce sufficient tidal perturbations to explain the ring morphology. The host galaxy of the MG1131+0456 source is a z_s > 2 ERO (``extremely red object'') which is lensed into optical and infrared rings of dramatically different morphologies. These differences imply a strongly wavelength-dependent source morphology that could be explained by embedding the host in a larger, dusty disk. At 1.6 micron (H), the ring is spectacularly luminous, with a total observed flux of H=17.4 mag and a de-magnified flux of 19.3 mag, corresponding to a 1-2L_* galaxy at the probable source redshift of z_s > 2. Thus, it is primarily the stellar emission of the radio source host galaxy that produces the overall colors of two of the reddest radio lenses, MG1131+0456 and B~1938+666, aided by the suppression of optical AGN emission by dust in the source galaxy. The dusty lens hypothesis -- that many massive early-type galaxies with 0.2 < z_l < 1.0 have large, uniform dust opacities -- is ruled out.Comment: 27 pages, 8 COLOR figures, submitted to ApJ. Black and white version available at http://cfa-www.harvard.edu/castle
    corecore