19 research outputs found

    Design Impact on Airflow Patterns in Fluidization Units

    Get PDF
    The airflow behavior in a fluidization unit was integrally studied by means of experimental work and computational fluid dynamics simulation. The computational domain included the gas inlet pipe, plenum, perforated plate, fluidization chamber, and air outlet pipe. Different scenarios were simulated to allow distinguishing the best way to represent perforated-plate distributors and elucidate the impact of the grid design on the fluidization performance. The simulated pressure drop across the distributor and the plenum flow pattern were in concordance with the experimental data. It was found that the distance between the peripheral holes and walls has a great impact on the airflow downstream the distributor.Fil: Renaudo, Carlos Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; ArgentinaFil: Bertin, Diego Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; ArgentinaFil: Bucala, Veronica. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentin

    Seasonality of Influenza A(H3N2) Virus: A Hong Kong Perspective (1997–2006)

    Get PDF
    BACKGROUND: The underlying basis for the seasonality of influenza A viruses is still uncertain. Phylogenetic studies investigated this phenomenon but have lacked sequences from more subtropical and tropical regions, particularly from Southeast Asia. METHODOLOGY/PRINCIPAL FINDINGS: 281 complete hemagglutinin (HA) and neuraminidase (NA) sequences were obtained from influenza A(H3N2) viruses, collected over 10 years (1997-2006) from Hong Kong. These dated sequences were analyzed with influenza A(H3N2) vaccine strain sequences (Syd/5/97, Mos/10/99, Fuj/411/02, Cal/7/04) and 315 other publicly available dated sequences from elsewhere, worldwide. In addition, the NA sequence alignment was inspected for the presence of any naturally occurring, known, neuraminidase inhibitor (NAI) resistance-associated amino acid mutations (R292K and E119V). Before 2001, the Hong Kong HA and NA sequences clustered more closely with the older vaccine sequences (Syd/5/97, Mos/10/99) than did sequences from elsewhere. After 2001, this trend reversed with significant clusters containing HA and NA sequences from different locations, isolated at different times, suggesting that viral migration may account for much of the influenza A(H3N2) seasonality during this 10-year period. However, at least one example from Hong Kong was found suggesting that in some years, influenza A(H3N2) viruses may persist in the same location, perhaps continuing to circulate, sub-clinically, at low levels between seasons, to re-emerge in the influenza season the following year, relatively unchanged. None of these Hong Kong influenza A(H3N2) NA sequences contained any of the known NAI-resistance associated mutations. CONCLUSIONS/SIGNIFICANCE: The seasonality of influenza A(H3N2) may be largely due to global migration, with similar viruses appearing in different countries at different times. However, occasionally, some viruses may remain within a single location and continue to circulate within that population, to re-emerge during the next influenza season, with relatively little genetic change. Naturally occurring NAI resistance mutations were absent or, at least, very rare in this population

    Neuroanatomical Pattern of Mitochondrial Complex I Pathology Varies between Schizophrenia, Bipolar Disorder and Major Depression

    Get PDF
    BACKGROUND:Mitochondrial dysfunction was reported in schizophrenia, bipolar disorderand major depression. The present study investigated whether mitochondrial complex I abnormalities show disease-specific characteristics. METHODOLOGY/PRINCIPAL FINDINGS:mRNA and protein levels of complex I subunits NDUFV1, NDUFV2 and NADUFS1, were assessed in striatal and lateral cerebellar hemisphere postmortem specimens and analyzed together with our previous data from prefrontal and parieto-occipital cortices specimens of patients with schizophrenia, bipolar disorder, major depression and healthy subjects. A disease-specific anatomical pattern in complex I subunits alterations was found. Schizophrenia-specific reductions were observed in the prefrontal cortex and in the striatum. The depressed group showed consistent reductions in all three subunits in the cerebellum. The bipolar group, however, showed increased expression in the parieto-occipital cortex, similar to those observed in schizophrenia, and reductions in the cerebellum, yet less consistent than the depressed group. CONCLUSIONS/SIGNIFICANCE:These results suggest that the neuroanatomical pattern of complex I pathology parallels the diversity and similarities in clinical symptoms of these mental disorders

    ALCAM Regulates Motility, Invasiveness, and Adherens Junction Formation in Uveal Melanoma Cells

    Get PDF
    ALCAM, a member of the immunoglobulin superfamily, has been implicated in numerous developmental events and has been repeatedly identified as a marker for cancer metastasis. Previous studies addressing ALCAM’s role in cancer have, however, yielded conflicting results. Depending on the tumor cell type, ALCAM expression has been reported to be both positively and negatively correlated with cancer progression and metastasis in the literature. To better understand how ALCAM might regulate cancer cell behavior, we utilized a panel of defined uveal melanoma cell lines with high or low ALCAM levels, and directly tested the effects of manipulating these levels on cell motility, invasiveness, and adhesion using multiple assays. ALCAM expression was stably silenced by shRNA knockdown in a high-ALCAM cell line (MUM-2B); the resulting cells displayed reduced motility in gap-closure assays and a reduction in invasiveness as measured by a transwell migration assay. Immunostaining revealed that the silenced cells were defective in the formation of adherens junctions, at which ALCAM colocalizes with N-cadherin and ß-catenin in native cells. Additionally, we stably overexpressed ALCAM in a low-ALCAM cell line (MUM-2C); intriguingly, these cells did not exhibit any increase in motility or invasiveness, indicating that ALCAM is necessary but not sufficient to promote metastasis-associated cell behaviors. In these ALCAM-overexpressing cells, however, recruitment of ß-catenin and N-cadherin to adherens junctions was enhanced. These data confirm a previously suggested role for ALCAM in the regulation of adherens junctions, and also suggest a mechanism by which ALCAM might differentially enhance or decrease invasiveness, depending on the type of cadherin adhesion complexes present in tissues surrounding the primary tumor, and on the cadherin status of the tumor cells themselves
    corecore