399 research outputs found

    Numerical marching techniques for fluid flows with heat transfer

    Get PDF
    The finite difference formulation and method of solution is presented for a wide variety of fluid flow problems with associated heat transfer. Only a few direct results from these formulations are given as examples, since the book is intended primarily to serve a discussion of the techniques and as a starting point for further investigations; however, the formulations are sufficiently complete that a workable computer program may be written from them. In the appendixes a number of topics are discussed which are of interest with respect to the finite difference equations presented. These include a very rapid method for solving certain sets of linear algebraic equations, a discussion of numerical stability, the inherent error in flow rate for confined flow problems, and a method for obtaining high accuracy with a relatively small number of mesh points

    Viscous flow in a short cylindrical vortex chamber with a finite swirl ratio

    Get PDF
    Laminar incompressible viscous flow in short cylindrical vortex chamber with finite swirl rati

    Arkansas Cotton Variety Test 2004

    Get PDF
    The primary aim of the Arkansas Cotton Variety Test is to provide unbiased data regarding the agronomic performance of cotton varieties and advanced breeding lines in the major cotton-growing areas of Arkansas. This information helps seed dealers establish marketing strategies and assists producers in choosing varieties to plant

    Collision of Domain Walls and Reheating of the Brane Universe

    Full text link
    We study a particle production at the collision of two domain walls in 5-dimensional Minkowski spacetime. This may provide the reheating mechanism of an ekpyrotic (or cyclic) brane universe, in which two BPS branes collide and evolve into a hot big bang universe. We evaluate a production rate of particles confined to the domain wall. The energy density of created particles is given as ρ20gˉ4Nb mη4\rho \approx 20 \bar{g}^4 N_b ~m_\eta^4 where gˉ\bar{g} is a coupling constant of particles to a domain-wall scalar field, NbN_b is the number of bounces at the collision and mηm_\eta is a fundamental mass scale of the domain wall. It does not depend on the width dd of the domain wall, although the typical energy scale of created particles is given by ω1/d\omega\sim 1/d. The reheating temperature is evaluated as TR0.88 gˉ Nb1/4T_{\rm R}\approx 0.88 ~ \bar{g} ~ N_b^{1/4}. In order to have the baryogenesis at the electro-weak energy scale, the fundamental mass scale is constrained as m_\eta \gsim 1.1\times 10^7 GeV for gˉ105\bar{g}\sim 10^{-5}.Comment: 10 pages, 12 figure

    Discovery of Small-Scale Spiral Structures in the Disk of SAO 206462 (HD 135344B): Implications for the Physical State of the Disk from Spiral Density Wave Theory

    Full text link
    We present high-resolution, H-band, imaging observations, collected with Subaru/HiCIAO, of the scattered light from the transitional disk around SAO 206462 (HD 135344B). Although previous sub-mm imagery suggested the existence of the dust-depleted cavity at r~46AU, our observations reveal the presence of scattered light components as close as 0.2" (~28AU) from the star. Moreover, we have discovered two small-scale spiral structures lying within 0.5" (~70AU). We present models for the spiral structures using the spiral density wave theory, and derive a disk aspect ratio of h~0.1, which is consistent with previous sub-mm observations. This model can potentially give estimates of the temperature and rotation profiles of the disk based on dynamical processes, independently from sub-mm observations. It also predicts the evolution of the spiral structures, which can be observable on timescales of 10-20 years, providing conclusive tests of the model. While we cannot uniquely identify the origin of these spirals, planets embedded in the disk may be capable of exciting the observed morphology. Assuming that this is the case, we can make predictions on the locations and, possibly, the masses of the unseen planets. Such planets may be detected by future multi-wavelengths observations.Comment: 8 pages, 5 figures, ApJL in press, typo correcte

    High-Resolution Near-Infrared Polarimetry of a Circumstellar Disk around UX Tau A

    Full text link
    We present H-band polarimetric imagery of UX Tau A taken with HiCIAO/AO188 on the Subaru Telescope. UX Tau A has been classified as a pre-transitional disk object, with a gap structure separating its inner and outer disks. Our imagery taken with the 0.15 (21 AU) radius coronagraphic mask has revealed a strongly polarized circumstellar disk surrounding UX Tau A which extends to 120 AU, at a spatial resolution of 0.1 (14 AU). It is inclined by 46 \pm 2 degree as the west side is nearest. Although SED modeling and sub-millimeter imagery suggested the presence of a gap in the disk, with the inner edge of the outer disk estimated to be located at 25 - 30 AU, we detect no evidence of a gap at the limit of our inner working angle (23 AU) at the near-infrared wavelength. We attribute the observed strong polarization (up to 66 %) to light scattering by dust grains in the disk. However, neither polarization models of the circumstellar disk based on Rayleigh scattering nor Mie scattering approximations were consistent with the observed azimuthal profile of the polarization degrees of the disk. Instead, a geometric optics model of the disk with nonspherical grains with the radii of 30 micron meter is consistent with the observed profile. We suggest that the dust grains have experienced frequent collisional coagulations and have grown in the circumstellar disk of UX Tau A.Comment: 20 pages, 8 figures, and 1 table. accepted to PAS

    Deriving a mutation index of carcinogenicity using protein structure and protein interfaces

    Get PDF
    With the advent of Next Generation Sequencing the identification of mutations in the genomes of healthy and diseased tissues has become commonplace. While much progress has been made to elucidate the aetiology of disease processes in cancer, the contributions to disease that many individual mutations make remain to be characterised and their downstream consequences on cancer phenotypes remain to be understood. Missense mutations commonly occur in cancers and their consequences remain challenging to predict. However, this knowledge is becoming more vital, for both assessing disease progression and for stratifying drug treatment regimes. Coupled with structural data, comprehensive genomic databases of mutations such as the 1000 Genomes project and COSMIC give an opportunity to investigate general principles of how cancer mutations disrupt proteins and their interactions at the molecular and network level. We describe a comprehensive comparison of cancer and neutral missense mutations; by combining features derived from structural and interface properties we have developed a carcinogenicity predictor, InCa (Index of Carcinogenicity). Upon comparison with other methods, we observe that InCa can predict mutations that might not be detected by other methods. We also discuss general limitations shared by all predictors that attempt to predict driver mutations and discuss how this could impact high-throughput predictions. A web interface to a server implementation is publicly available at http://inca.icr.ac.uk/
    corecore