7,726 research outputs found
Rotor systems research aircraft airplane configuration flight-test results
The rotor systems research aircraft (RSRA) has undergone ground and flight tests, primarily as a compound aircraft. The purpose was to train pilots and to check out and develop the design flight envelope. The preparation and flight test of the RSRA in the airplane, or fixed-wind, configuration are reviewed and the test results are discussed
A New Wideband, Fully Steerable, Decametric Array at Clark Lake
A fully steerable, decametric array for radio astronomy is under construction at the Clark Lake Radio Observatory near Borrego Springs, California. This array will be a T of 720 conical spiral antennas (teepee-shaped antennas, hence the array is called the TPT), 3.0 km by 1.8 km capable of operating between 15 and 125 MHz. Both its operating frequency and beam position will be adjustable in less than one millisecond, and the TPT will provide a 49-element picture around the central beam position for extended source observations. Considerable experience was gained in the operation of completed portions of the array, and successful operation of the final array is assured. The results are described of the tests which were conducted with the conical spirals, and the planned electronics and data processing systems are described
Static and dynamic stability analysis of the space shuttle vehicle-orbiter
The longitudinal static and dynamic stability of a Space Shuttle Vehicle-Orbiter (SSV Orbiter) model is analyzed using the FLEXSTAB computer program. Nonlinear effects are accounted for by application of a correction technique in the FLEXSTAB system; the technique incorporates experimental force and pressure data into the linear aerodynamic theory. A flexible Orbiter model is treated in the static stability analysis for the flight conditions of Mach number 0.9 for rectilinear flight (1 g) and for a pull-up maneuver (2.5 g) at an altitude of 15.24 km. Static stability parameters and structural deformations of the Orbiter are calculated at trim conditions for the dynamic stability analysis, and the characteristics of damping in pitch are investigated for a Mach number range of 0.3 to 1.2. The calculated results for both the static and dynamic stabilities are compared with the available experimental data
Hypersonic test facility Patent
Hypersonic test facility for studying ablation in models under high pressure and high temperatur
NASA rotor system research aircraft flight-test data report: Helicopter and compound configuration
The flight test activities of the Rotor System Research Aircraft (RSRA), NASA 740, from June 30, 1981 to August 5, 1982 are reported. Tests were conducted in both the helicopter and compound configurations. Compound tests reconfirmed the Sikorsky flight envelope except that main rotor blade bending loads reached endurance at a speed about 10 knots lower than previously. Wing incidence changes were made from 0 to 10 deg
Large-signal modelling and analysis of switching regulators
A large-signal switching regulator model is derived, and prominent features of the transient response are determined. In particular, analytical expressions are found for the equilibrium points of the system which yield insight into the large-signal response, and computer-generated transient waveforms are obtained.
As an example, a boost regulator is investigated, and is found to be stable for small signals but unstable for large transients
Spurious phase in a model for traffic on a bridge
We present high-precision Monte Carlo data for the phase diagram of a
two-species driven diffusive system, reminiscent of traffic across a narrow
bridge. Earlier studies reported two phases with broken symmetry; the existence
of one of these has been the subject of some debate. We show that the disputed
phase disappears for sufficiently large systems and/or sufficiently low bulk
mobility.Comment: 8 pages, 3 figures, JPA styl
The W51 Giant Molecular Cloud
We present 45"-47" angular resolution maps at 50" sampling of the 12CO and
13CO J=1-0 emission toward a 1.39 deg x 1.33 deg region in the W51 HII region
complex. These data permit the spatial and kinematic separation of several
spectral features observed along the line of sight to W51, and establish the
presence of a massive (1.2 x 10^6 Mo), large (83 pc x 114 pc) giant molecular
cloud (GMC), defined as the W51 GMC, centered at (l,b,V) = (49.5 deg, -0.2 deg,
61 km/s). A second massive (1.9 x 10^5 Mo), elongated (136 pc x 22 pc)
molecular cloud is found at velocities of about 68 km/s along the southern edge
of the W51 GMC. Of the five radio continuum sources that classically define the
W51 region, the brightest source at lambda 6cm (G49.5-0.4) is spatially and
kinematically coincident with the W51 GMC and three (G48.9-0.3, G49.1-0.4, and
G49.2-0.4) are associated with the 68 km/s cloud. Published absorption line
spectra indicate that the fifth prominent continuum source (G49.4-0.3) is
located behind the W51 molecular cloud. The W51 GMC is among the upper 1% of
clouds in the Galactic disk by size and the upper 5-10% by mass. While the W51
GMC is larger and more massive than any nearby molecular cloud, the average H2
column density is not unusual given its size and the mean H2 volume density is
comparable to that in nearby clouds. The W51 GMC is also similar to other
clouds in that most of the molecular mass is contained in a diffuse envelope
that is not currently forming massive stars. We speculate that much of the
massive star formation activity in this region has resulted from a collision
between the 68 km/s cloud and the W51 GMC.Comment: Accepted for publication by the Astronomical Journal. 21 pages, plus
7 figures and 1 tabl
Upper Limits on the Continuum Emission from Geminga at 74 and 326 MHz
We report a search for radio continuum emission from the gamma-ray pulsar
Geminga. We have used the VLA to image the location of the optical counterpart
of Geminga at 74 and 326 MHz. We detect no radio counterpart. We derive upper
limits to the pulse-averaged flux density of Geminga, taking diffractive
scintillation into account. We find that diffractive scintillation is probably
quenched at 74 MHz and does not influence our upper limit, S < 56 mJy
(2\sigma), but that a 95% confidence level at 326 MHz is S < 5 mJy. Owing to
uncertainties on the other low-frequency detections and the possibility of
intrinsic variability or extrinsic variability (refractive interstellar
scintillation) or both, our non-detections are nominally consistent with these
previous detections.Comment: 8 pages, LaTeX2e with AASTeX 4.0, 3 figures; to be published in Ap
- …