2,312 research outputs found

    Mapping magnetism: geophysical modelling of stratigraphic features by using in situ magnetic susceptibility measurements at Pinnacle Point 5‐6 North, South Africa

    Get PDF
    This study utilizes geostatistical modelling of magnetic susceptibility (MS) for geophysical prospection of archaeological stratigraphy at the Middle Stone Age rock shelter site of Pinnacle Point 5-6 North. These models are overlaid onto high-resolution photography of the stratigraphic sequence to study the lateral and vertical changes within the magnetic signature of the archaeological sequence and correlate these changes to micromorphological interpretations previously made at the site. In situ analysis is reinforced by laboratory magnetic mineralogical analysis utilizing MS; frequency-dependent susceptibility (chi(FD)); isothermal remanent magnetization; and anhysteric remanent magnetization to understand the composition of the magnetic minerals creating the in situ signature. This study shows that there is consistent variation in the magnetic signatures of the sequence that can be mapped with in situ MS; there is a correlation with laboratory analysis of magnetic mineralogy, which provides insight into changes in human behaviour; and our models correlate well with micromorphological interpretations of the site.info:eu-repo/semantics/publishedVersio

    Lung volume reduction surgery combined with cardiac interventions

    Get PDF
    Objective: Postoperative course and functional outcome were evaluated in patients who underwent lung volume reduction surgery (LVRS) or in combination with valve replacement (VR), percutaneous transluminal coronary angioplasty (PTCA), placement of a stent, or coronary artery bypass grafting (CABG). Methods: Patients with severe bronchial obstruction and hyperinflation due to pulmonary emphysema were evaluated for lung volume reduction surgery. Cardiac disorders were screened by history and physical examination and assessed by coronary angiography. Nine patients were accepted for LVRS in combination with an intervention for coronary artery disease (CAD). In addition, three patients with valve disease and severe emphysema were accepted for valve replacement (two aortic-, one mitral valve) only in combination with LVRS. Functional results over the first 6 months were analysed. Results: Pulmonary function testing demonstrates a significant improvement in postoperative FEV1 in patients who underwent LVRS combined with an intervention for CAD. This was reflected in reduction of overinflation (residual volume/total lung capacity (RV/TLC)), and improvement in the 12-min walking distance and dyspnea. Median hospital stay was 15 days (10-33). One patient in the CAD group died due to pulmonary edema on day 2 postoperatively. One of the three patients who underwent valve replacement and LVRS died on day 14 postoperatively following intestinal infarction. Both survivors improved in pulmonary function, dyspnea score and exercise capacity. Complications in all 12 patients included pneumothorax (n = 2), hematothorax (n = 1) and urosepsis (n = 1). Conclusion: Functional improvement after LVRS in patients with CAD is equal to patients without CAD. Mortality in patients who underwent LVRS after PTCA or CABG was comparable to patients without CAD. LVRS enables valve replacement in selected patients with severe emphysema otherwise inoperabl

    Giant-dipole Resonance and the Deformation of Hot, Rotating Nuclei

    Get PDF
    The development of nuclear shapes under the extreme conditions of high spin and/or temperature is examined. Scaling properties are used to demonstrate universal properties of both thermal expectation values of nuclear shapes as well as the minima of the free energy, which can be used to understand the Jacobi transition. A universal correlation between the width of the giant dipole resonance and quadrupole deformation is found, providing a novel probe to measure the nuclear deformation in hot nuclei.Comment: 6 pages including 6 figures. To appear in Phys. Rev. Lett. Revtex

    The formation of homogentisate in the biosynthesis of tocopherol and plastoquinone in spinach chloroplasts

    Get PDF
    Homogentisate is the precursor in the biosynthesis of -tocopherol and plastoquinone-9 in chloroplasts. It is formed of 4-hydroxyphenylpyruvate of the shikimate pathway by the 4-hydroxyphenylpyruvate dioxygenase. In experiments with spinach the dioxygenase was shown to be localized predominatedly in the chloroplasts. Envelope membranes exhibit the highest specific activity, however, because of the high stromal portion of chloroplasts, 60–80% of the total activity is housed in the stroma. The incorporation of 4-hydroxyphenylpyruvate into 2-methyl-6-phytylquinol as the first intermediate in the tocopherol synthesis by the two-step-reaction: 4-Hydroxyphenylpyruvate Homogentisate 2-Methyl-6-phytylquinol was demonstrated by using envelope membranes. Homogentisate originates directly from 4-hydroxyphenylpyruvate of the shikimate pathway. Additionally, a bypass exists in chloroplasts which forms 4-hydroxyphenylpyruvate from tyrosine by an L-amino-acid oxidase of the thylakoids and in peroxisomes by a transaminase reaction. Former results about the dioxygenase in peroxisomes were verified

    Two-component Bose-Einstein Condensates with Large Number of Vortices

    Full text link
    We consider the condensate wavefunction of a rapidly rotating two-component Bose gas with an equal number of particles in each component. If the interactions between like and unlike species are very similar (as occurs for two hyperfine states of 87^{87}Rb or 23^{23}Na) we find that the two components contain identical rectangular vortex lattices, where the unit cell has an aspect ratio of 3\sqrt{3}, and one lattice is displaced to the center of the unit cell of the other. Our results are based on an exact evaluation of the vortex lattice energy in the large angular momentum (or quantum Hall) regime.Comment: 4 pages, 2 figures, RevTe

    Multiply-connected Bose-Einstein condensed alkali gases: Current-carrying states and their decay

    Full text link
    The ability to support metastable current-carrying states in multiply-connected settings is one of the prime signatures of superfluidity. Such states are investigated theoretically for the case of trapped Bose condensed alkali gases, particularly with regard to the rate at which they decay via thermal fluctuations. The lifetimes of metastable currents can be either longer or shorter than experimental time-scales. A scheme for the experimental detection of metastable states is sketched.Comment: 4 pages, including 1 figure (REVTEX

    Exact quantum Monte Carlo study of one dimensional trapped fermions with attractive contact interactions

    Full text link
    Using exact continuous quantum Monte Carlo techniques, we study the zero and finite temperature properties of a system of harmonically trapped one dimensional spin 1/2 fermions with short range interactions. Motivated by experimental searches for modulated Fulde-Ferrel-Larkin-Ovchinikov states, we systematically examine the impact of a spin imbalance on the density profiles. We quantify the accuracy of the Thomas-Fermi approximation, finding that for sufficiently large particle numbers (N > 100) it quantitatively reproduces most features of the exact density profile. The Thomas-Fermi approximation fails to capture small Friedel-like spin and density oscillations and overestimates the size of the fully paired region in the outer shell of the trap. Based on our results, we suggest a range of experimentally tunable parameters to maximize the visibility of the double shell structure of the system and the Fulde-Ferrel-Larkin-Ovchinikov state in the one dimensional harmonic trap. Furthermore, we analyze the fingerprints of the attractive contact interactions in the features of the momentum and pair momentum distributions.Comment: 11 pages, 10 figure
    corecore