3,205 research outputs found

    Atlantic menhaden, Brevoortia tyrannus, Purse Seine Fishery, 1972-84, with a brief discussion of age and size composition of the Landings

    Get PDF
    This report summarizes (I) annual purse seine landings of Atlantic menhaden, Brevoortia tyrannus, for 1972-84, (2) estimated numbers of fish caught by fishing area. (3) estimates of nominal fishing effort and catch-per-unit-effort, (4) mean fish length and weight, and (5) major changes in the fishery. During the 1970s stock size and recruitment increased and the age composition broadened. reversing trends witnessed during the fishery's decline in the 1960s. Landings steadily improved and by 1980 the total coast wide landings exceeded 400,000 metric tons. Nevertheless, the character of the fishery changed considerably. Eleven reduction plants processed fish at seven ports in 1972, but in 1984 only eight plants operated at live ports. Beginning in the mid-1960s the center of fishing aclivity shifted from the Middle Atlantic area to the Chesapeake Bay area, which has continued to dominate the fishery in landings and effort through the 1970s and 1980s. During this period the average size and age of fish in the catches declined. (PDF file contains 30 pages.

    Distribution Substation Dynamic Reconfiguration and Reinforcement-Digital Twin Model

    Get PDF
    The proliferation of electric vehicles will increase demand and alter the load profiles on final distribution substations quicker than traditional reinforcement techniques can respond. As it is nontrivial to determine in advance, to street level granularity, where and when vehicles will charge, a more flexible approach to substation reinforcement is preferable to the existing rip-out-and-replace technique for an overloaded transformer. Distribution Substation Dynamic Reconfiguration (DSDR) combines reinforcement using parallel transformers with reconfiguration algorithms to flexibly operate the substation in the face of uncertain loading conditions, by dynamically switching transformers in and out of service. This paper presents a digital twin and a benchtop scale model of the DSDR substation for the development and evaluation of such algorithms, along with two algorithms for optimizing substation technical losses. Initial results show that on a single tested substation model, efficiency increased by 5.40% with Net-Zero Year 2050 load profiles versus traditional reinforcement

    Asymmetric polarity reversals, bimodal field distribution, and coherence resonance in a spherically symmetric mean-field dynamo model

    Full text link
    Using a mean-field dynamo model with a spherically symmetric helical turbulence parameter alpha which is dynamically quenched and disturbed by additional noise, the basic features of geomagnetic polarity reversals are shown to be generic consequences of the dynamo action in the vicinity of exceptional points of the spectrum. This simple paradigmatic model yields long periods of constant polarity which are interrupted by self-accelerating field decays leading to asymmetric polarity reversals. It shows the recently discovered bimodal field distribution, and it gives a natural explanation of the correlation between polarity persistence time and field strength. In addition, we find typical features of coherence resonance in the dependence of the persistence time on the noise.Comment: 5 pages, 7 figure

    The role of haptic communication in dyadic collaborative object manipulation tasks

    Get PDF
    Intuitive and efficient physical human-robot collaboration relies on the mutual observability of the human and the robot, i.e. the two entities being able to interpret each other's intentions and actions. This is remedied by a myriad of methods involving human sensing or intention decoding, as well as human-robot turn-taking and sequential task planning. However, the physical interaction establishes a rich channel of communication through forces, torques and haptics in general, which is often overlooked in industrial implementations of human-robot interaction. In this work, we investigate the role of haptics in human collaborative physical tasks, to identify how to integrate physical communication in human-robot teams. We present a task to balance a ball at a target position on a board either bimanually by one participant, or dyadically by two participants, with and without haptic information. The task requires that the two sides coordinate with each other, in real-time, to balance the ball at the target. We found that with training the completion time and number of velocity peaks of the ball decreased, and that participants gradually became consistent in their braking strategy. Moreover we found that the presence of haptic information improved the performance (decreased completion time) and led to an increase in overall cooperative movements. Overall, our results show that humans can better coordinate with one another when haptic feedback is available. These results also highlight the likely importance of haptic communication in human-robot physical interaction, both as a tool to infer human intentions and to make the robot behaviour interpretable to humans

    Relativistic diffusion processes and random walk models

    Get PDF
    The nonrelativistic standard model for a continuous, one-parameter diffusion process in position space is the Wiener process. As well-known, the Gaussian transition probability density function (PDF) of this process is in conflict with special relativity, as it permits particles to propagate faster than the speed of light. A frequently considered alternative is provided by the telegraph equation, whose solutions avoid superluminal propagation speeds but suffer from singular (non-continuous) diffusion fronts on the light cone, which are unlikely to exist for massive particles. It is therefore advisable to explore other alternatives as well. In this paper, a generalized Wiener process is proposed that is continuous, avoids superluminal propagation, and reduces to the standard Wiener process in the non-relativistic limit. The corresponding relativistic diffusion propagator is obtained directly from the nonrelativistic Wiener propagator, by rewriting the latter in terms of an integral over actions. The resulting relativistic process is non-Markovian, in accordance with the known fact that nontrivial continuous, relativistic Markov processes in position space cannot exist. Hence, the proposed process defines a consistent relativistic diffusion model for massive particles and provides a viable alternative to the solutions of the telegraph equation.Comment: v3: final, shortened version to appear in Phys. Rev.

    Off-Critical SLE(2) and SLE(4): a Field Theory Approach

    Full text link
    Using their relationship with the free boson and the free symplectic fermion, we study the off-critical perturbation of SLE(4) and SLE(2) obtained by adding a mass term to the action. We compute the off-critical statistics of the source in the Loewner equation describing the two dimensional interfaces. In these two cases we show that ratios of massive by massless partition functions, expressible as ratios of regularised determinants of massive and massless Laplacians, are (local) martingales for the massless interfaces. The off-critical drifts in the stochastic source of the Loewner equation are proportional to the logarithmic derivative of these ratios. We also show that massive correlation functions are (local) martingales for the massive interfaces. In the case of massive SLE(4), we use this property to prove a factorisation of the free boson measure.Comment: 30 pages, 1 figures, Published versio

    Infrared 3-4 Micron Spectroscopic Investigations of a Large Sample of Nearby Ultraluminous Infrared Galaxies

    Full text link
    We present infrared L-band (3-4 micron) nuclear spectra of a large sample of nearby ultraluminous infrared galaxies (ULIRGs).ULIRGs classified optically as non-Seyferts (LINERs, HII-regions, and unclassified) are our main targets. Using the 3.3 micron polycyclic aromatic hydrocarbon (PAH) emission and absorption features at 3.1 micron due to ice-covered dust and at 3.4 micron produced by bare carbonaceous dust, we search for signatures of powerful active galactic nuclei (AGNs) deeply buried along virtually all lines-of-sight. The 3.3 micron PAH emission, the signatures of starbursts, is detected in all but two non-Seyfert ULIRGs, but the estimated starburst magnitudes can account for only a small fraction of the infrared luminosities. Three LINER ULIRGs show spectra typical of almost pure buried AGNs, namely, strong absorption features with very small equivalent-width PAH emission. Besides these three sources, 14 LINER and 3 HII ULIRGs' nuclei show strong absorption features whose absolute optical depths suggest an energy source more centrally concentrated than the surrounding dust, such as a buried AGN. In total, 17 out of 27 (63%) LINER and 3 out of 13 (23%) HII ULIRGs' nuclei show some degree of evidence for powerful buried AGNs, suggesting that powerful buried AGNs may be more common in LINER ULIRGs than in HII ULIRGs. The evidence of AGNs is found in non-Seyfert ULIRGs with both warm and cool far-infrared colors. These spectra are compared with those of 15 ULIRGs' nuclei with optical Seyfert signatures taken for comparison.The overall spectral properties suggest that the total amount of dust around buried AGNs in non-Seyfert ULIRGs is systematically larger than that around AGNs in Seyfert 2 ULIRGs.Comment: 56 pages, 9 figures, accepted for publication in ApJ (20 January 2006, vol 637 issue

    The structures of Hausdorff metric in non-Archimedean spaces

    Full text link
    For non-Archimedean spaces X X and Y, Y, let M(X),M(VW) \mathcal{M}_{\flat } (X), \mathfrak{M}(V \rightarrow W) and D(X,Y) \mathfrak{D}_{\flat }(X, Y) be the ballean of X X (the family of the balls in X X ), the space of mappings from X X to Y, Y, and the space of mappings from the ballen of X X to Y, Y, respectively. By studying explicitly the Hausdorff metric structures related to these spaces, we construct several families of new metric structures (e.g., ρ^u,β^X,Yλ,β^X,Yλ \widehat{\rho } _{u}, \widehat{\beta }_{X, Y}^{\lambda }, \widehat{\beta }_{X, Y}^{\ast \lambda } ) on the corresponding spaces, and study their convergence, structural relation, law of variation in the variable λ, \lambda, including some normed algebra structure. To some extent, the class β^X,Yλ \widehat{\beta }_{X, Y}^{\lambda } is a counterpart of the usual Levy-Prohorov metric in the probability measure spaces, but it behaves very differently, and is interesting in itself. Moreover, when X X is compact and Y=K Y = K is a complete non-Archimedean field, we construct and study a Dudly type metric of the space of K K-valued measures on X. X. Comment: 43 pages; this is the final version. Thanks to the anonymous referee's helpful comments, the original Theorem 2.10 is removed, Proposition 2.10 is stated now in a stronger form, the abstact is rewritten, the Monna-Springer is used in Section 5, and Theorem 5.2 is written in a more general for
    corecore