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Abstract— Intuitive and efficient physical human-robot col-
laboration relies on the mutual observability of the human and
the robot, i.e. the two entities being able to interpret each
other’s intentions and actions. This is remedied by a myriad
of methods involving human sensing or intention decoding, as
well as human-robot turn-taking and sequential task planning.
However, the physical interaction establishes a rich channel of
communication through forces, torques and haptics in general,
which is often overlooked in industrial implementations of
human-robot interaction. In this work, we investigate the role of
haptics in human collaborative physical tasks, to identify how
to integrate physical communication in human-robot teams.
We present a task to balance a ball at a target position on
a board either bimanually by one participant, or dyadically
by two participants, with and without haptic information. The
task requires that the two sides coordinate with each other,
in real-time, to balance the ball at the target. We found that
with training the completion time and number of velocity peaks
of the ball decreased, and that participants gradually became
consistent in their braking strategy. Moreover we found that
the presence of haptic information improved the performance
(decreased completion time) and led to an increase in overall
cooperative movements. Overall, our results show that humans
can better coordinate with one another when haptic feedback
is available. These results also highlight the likely importance
of haptic communication in human-robot physical interaction,
both as a tool to infer human intentions and to make the robot
behaviour interpretable to humans.

I. INTRODUCTION

The emergency of practical applications for collaborative
robots has led to various platforms for safe human-robot
interaction, resulting in a human in-the-loop system with
unique challenges particularly in mutual observability be-
tween the human and the robot [1]. The lack of observability
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Fig. 1. The experiment setup. A and B show the bimanual and dyadic ex-
periment setup, respectively. The two participants in the dyadic experiments
were separated by a curtain, such that they could not see the movement of
their partners. The task is to control the board and balance the red ball
within the orange target area. C, The dynamics of the virtual experiment
model. The board was controlled by the participants via a spring-damper
system and the center of the board was attached to the origin of the world
coordinate by a spring.

of the robot for the human can arise, e.g., from the use
of control algorithms and therefore motions that are not
interpretable for the human. From the robot’s side, the lack of
observabiltiy of the human can arise from, e.g., the stochas-
ticity of human behaviour and challenges in human intent
recognition. Crucially, both entities face issues in obtaining
a theory of mind of each other, which can lead to lack of
trust by the human, resulting in unsafe and unsuccessful
interactions [2].

A common approach to solving issues of observability
in human-robot collaboration, has been to rely on turn-
taking approaches [1], [3], and methods such as planning
and scheduling to create a human-robot choreography [4], to
coordinate the two entities towards successful collaboration.
While this has been applied successfully in industrial set-
tings, it differs from how humans collaborate with each other
in physical tasks [5]. When it comes to physical interaction,
we have access to a physical channel of communication
through haptics [5]–[7], which can be leveraged to enhance
mutual observability of the human-robot team. Using the
physical channel, humans communicate through forces, ef-
fectively implementing the turn-taking approach at a micro-
interaction level, through assigning leader and follower roles,
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and switching roles as needed to fulfil the task efficiently [8],
[9].

We previously demonstrated the applicability of human
in-the-loop reinforcement learning to learn personalised col-
laborative policies through direct, real-world and real-time
interaction with a human partner, in a synchronous col-
laborative task [10]. To extend our approach to physical
interactions, we want to better understand the role of haptics
in human-human and human-robot collaboration, and expose
our reinforcement learning agent to the physical channel of
communication. Here, we present an experimental setup to
study human-human and human-robot haptic communication
during physical collaborations (Fig. 1). We used two haptic
devices (Phantom Touch; 3D SYSTEMS) to interface hu-
mans with a virtual reality setup involving balancing a ball
at given target locations on a board. Our participants use the
haptic devices bimanually, and in dyadic teams, in blocks of
trials with and without haptic feedback, allowing us to study
the role of haptics and dyadic coordination in the success of
the collaboration.

Many previous studies have examined dyadic human-
human and human-robot physical interaction. When phys-
ical interaction takes place, haptic communication transfers
valuable information via forces and torques sensed by the
partners. This information can be used to infer intentions
as well as to determine the role of each participant in the
task, thus allows the dyad to better collaborate [5], [6],
[11]. Humans interacting in a group can coordinate their
movement by estimating the partner’s goal [12], [13]. When
the two participants were coupled by a hard mechanics, they
were more likely to develop into different roles and achieve
a better performance, compared to when their interaction
was soft [14], [15]. Several models have been developed to
allow robots to better collaborate with humans by inferring
the human’s intention from haptic information and adapting
roles in the collaboration [5], [7], [8].

Much previous work studying human-human physical
collaboration focused on simple tasks, such as moving a
crank [6], tracking a moving target [12]–[14] or reaching
movement [15]. In this work, we studied the manipulation
of a complex object with internal dynamics. The experiment
was performed by individuals bimanually or by dyads either
with or without haptic feedback. By comparing the perfor-
mance in the two haptic conditions, we found that haptic
feedback allowed the participants to coordinate better and
achieve better performance.

II. MATERIALS AND METHODS
A. Experimental apparatus

Participants were asked to control the rotation and ver-
tical position of a board in order to move and balance a
ball within a target area in virtual reality (VR). The two
ends of the board were controlled by two haptic devices,
either bimanually by one participant, or dyadicly by two
participants. These two configurations were examined both
with and without haptic communication. When participants
worked in dyadic teams, they were not allowed to talk and

were separated by a curtain, such that they could not see
their partners, see Fig. 1. The VR environment was rendered
by Chai3D [16]. Data in the VR environment, for example
position of the ball, rotation of the board, and interaction
forces were sampled at 1000 Hz.

The positive directions of the X, Y and Z axes of the
virtual environment were perpendicular to the screen pointing
outward, to the right of the screen, and to the top of the
screen, respectively. The board was 700 mm long and 50
mm wide. The radius of the ball was 25 mm. The 70 mm-
wide target was placed at 150 mm to the left or right of
the board. The center of the board was connected to the
origin of the world coordinate by an invisible spring. Two
control points were placed at 250 mm to the left and right of
the center of the board. Participants held the styluses of two
haptic devices, which were placed in front of the participants.
The z-coordinates of the control points were controlled by
the participants. The interaction forces between the board
and the participants were computed with a spring-damper
mechanism. Participants could control the position and angle
of the board by moving the styluses of the haptic devices.
The hand movement was restricted by the program to the
vertical direction. The board could only be translated on the
z axis and rotate around x axis, but it could not move on
the x, y axes or rotate around y, z axes. The ball could only
move along the long side of the board.

B. Experimental paradigm

At the beginning of each trial, the ball was fixed at the
position opposite to the target area with respect to the center
of the board. Participants were asked to tilt the board to
get the center of the ball within the target area. Participants
needed to keep the ball on the board. Once the ball fell off
the edge of the board, the trial would be marked as failed
and started over. The trial ended when the ball stayed inside
the target area for 1.5 s. The ball was then shifted to the
center of the current target. Then the target area switched
to the other side of the board and the next trial started.
Participants needed to keep the board horizontal, before the
next trial started. Participants could see the completion time
after each trial and were encouraged to finish the trials as
fast as possible.

Each participant performed 12 blocks of experiments (18
blocks across a pair of participants), where each block
consisted of 60 successful trials. In each block, the control
of the board was either bimanual, i.e. one participant control
the board using both hands, or dyadic, i.e. two participants
each control one side of the board using their dominant hand.
The two participants of each pair first alternately performed
4 bimanual blocks each, after that they cooperatively per-
formed 6 dyadic blocks, and finally ended with another 2
bimanual blocks each. They could get haptic feedback in the
z axis from the haptic devices in half of the blocks, while in
the other half they could not. The haptic condition (on/off)
was switched between each block, where the order of haptic
conditions was counterbalanced across all participants/pairs.



For each condition (bimanual/dyadic, haptic on/off), each
participant had 180 trials in total.

C. Virtual system model

Participants could apply forces to the board at the two con-
trol points. The forces were generated according to Equation
1.

Fn = kh (zstylus,n−zpoint,n)+ch (żstylus,n−żpoint,n) (1)

where n is either left or right, Fn is the generated force,
zstylus and zpoint are the z coordinates of the stylus and the
control point, respectively. The motion of the board and the
ball were simulated according to Equation 3, 4 and 5.

Fs = −ks zboard (2)

Fleft + Fright −M g −m g cos2 θ + Fs =Mz̈board (3)

(Fright − Fleft) l cos θ −m g pball cos θ = I θ̈ (4)
m p̈ball = m g sin θ (5)

In these equations, Fs is the force generated by the spring
connecting the board to the origin of the world coordinate.
zboard is the z coordinate of the center of the board. θ is the
angle of the board around the x axis. Positive values means
the board is rotated counter clockwise. pball is the relative
position of the ball with respect of the center of the board
along the ling side of the board, with positive values meaning
the ball is to the right of the board. The values and meanings
of the coefficients in the equations above are summarized in
Table I.

Symbol Coefficient Unit Value
M Weight of the board kg 0.01
m Weight of the ball kg 0.05
g Gravity acceleration m/s2 9.81
kh Force input spring stiffness N/s 200
ch Force input damper coefficient Ns/m 2

ks
Stiffness of the spring connected

to the origin N/m 140

l
distance between the control and

the center of the board m 0.25

I Moment of inertia of the board kg ·m2 0.0004

TABLE I
COEFFICIENTS OF THE VIRTUAL SYSTEM MODEL.

For the blocks with haptic feedback, −Fleft and −Fright

were generated by the left and right haptic devices, respec-
tively. No forces in the z axis were generated in blocks
without haptic feedback.

D. Data analysis

After data collection, the force and kinematic data were
low-pass filtered with a tenth-order, zero-phase-lag Butter-
worth filter with 20 Hz cutoff frequency to remove any high
frequency noise from data recording.

1) Completion time: Completion time was defined as the
time from the beginning of each trial, to the beginning of
the time when the ball stayed in the target area for 1.5s.

2) Participants’ Movement classification: At each time
step, the movement of the participants were classified into 4
types based on the velocity in the z axis of the left and right
styluses. Note that if the magnitude of velocity is lower than
0.003 m/s, the stylus is considered as not moving.

• Cooperative movement: the two sides were moving in
opposite directions.

• Competitive movement: the two sides were moving in
the same direction.

• Single movement: one side was moving while the other
side was not.

• Still: Both sides were not moving.

3) Board movement segmentation and delay: Each trial
was divided into multiple segments based on the angular
velocity of the board. The angular velocity was first low-
pass filtered with a tenth-order, zero-phase-lag Butterworth
filter with 5 Hz cutoff frequency, in order to make the
segmentation less sensitive to noise. If the filtered angular
velocity was higher than 1 degree/s for at least 100 ms
and the angle changed by at least 1 degree, this period was
marked as a board movement segment.

We calculated the delay between the left and right hands
(or left and right participants) for all cooperative movement
segments. A segment was marked as cooperative if the
styluses moved in opposite directions within the segment
and one side moved no more than nine times as much as
the other side. For all cooperative segments, the delay was
calculated as the difference in time when each side reached
a percentage of the peak velocity of the slower side in that
segment. This was done for 4 different percentages (10%,
20%, 30% and 40%) to ensure the result is robust to the
chosen threshold.

4) Number of peaks in the ball absolute velocity profile:
The number of peaks (NP) in the absolute velocity profile
of each trial was calculated according to Equation 6.

NP =
∣∣∣{vball(t), dvball(t)

dt
= 0,

d2vball(t)

dt2

}∣∣∣ (6)

where | · | represents the cardinality of a set, vball is the
absolute velocity of the ball with respect to the center of the
board. To make the calculation less sensitive to noise, vball
was first low-pass filtered with a tenth-order, zero-phase-lag
Butterworth filter with 5 Hz cutoff frequency.

5) Strategy: In order to balance the ball within the target
range as fast as possible, the participants need to develop
a control strategy. Here we focus on the first braking
movement. The braking movement was defined as the board
movement segments that generated an acceleration on the
ball in the opposite direction to the target. We considered
the onset of the first braking movement after the initial
movement towards the target. We hypothesized that after
the initial movement, participants would wait for the ball to
reach a specific position and velocity before performing the
first braking movement. The strategy was represented by two
values: a) The distance between the ball and the midpoint of



the target, b) The velocity of the ball in the direction of the
target. Both at the onset of the first braking movement.

We divided the 180 trials for each participant/dyad under
each haptic condition into 6 groups with 30 trials each, in
the order of completion. The distribution of the strategies
of each group were represented by an ellipse. The center of
the ellipse is the mean of the strategies. We used Principal
Component Analysis on each group and set the rotation of
the ellipse to the direction of the first principal component.
The width and height of the ellipse are calculated by the
90th percentile of the range of variation of the data in the
direction of the first and second principal component.

III. RESULTS

Seven right-handed participants and one left-handed par-
ticipant [17] (23-28 years of age, 2 women) took part
in this study. All participants were neurologically healthy.
They were naive to the purpose of this study and provided
written informed consent before participation. The study
was approved by the institutional ethics committee at the
Technical University of Munich.

A. Learning effect

Participants’ performance improved over the entire exper-
iment. The mean and standard deviation of the completion
time decreased from 5.71±4.48 s (mean±std) in the first 30
trials to 3.61±3.08 s in the last 30 trials for the bimanual
experiment and from 4.33±2.92 s in the first 30 trials to
3.62±2.23 s in the last 30 trials (Fig. 2A, B) for the dyadic
experiment. The colors denote the time of the four types
of movements. Comparing the bimanual and dyadic experi-
ments, it is clear that the share of cooperative movements and
still time was higher in bimanual experiments, while dyadic
experiments had more single movements and competitive
movements. As expected there was almost no competitive
movements in the bimanual experiments.

Another aspect of the learning effect is the number of
peaks in the ball absolute velocity profile. Number of peaks
decreased from 3.92±2.42 (mean±std) in the first 30 trials to
3.17±1.85 in the last 30 trials for the bimanual experiment
and from 4.27±2.91 in the first 30 trials to 3.28±1.95 in the
last 30 trials for the dyadic experiment.

B. The role of haptic feedback

For each dyad, we compared individual performance and
dyadic performance with or without haptic feedback, to see
if performance improved in dyad. In Figure 3, the x and y
coordinates were calculated as follows: x = 1

2 (vpartner −
vself ), y = vdyad − vself where v is either completion time
or number of peaks, the footnote of self and partner denote
the bimanual performance of each participant and their
partners, respectively, and dyad denote the performance of
each dyad. A positive x coordinate means that the participant
had a better performance than their partner, and a positive
y coordinate means that the participant’s performance de-
teriorated compared to their bimanual performance. If the
dyadic performance is better than the average performance

Fig. 2. The learning effect. A and B show the completion time and share of
each type of movement as a function of trials of the bimanual and dyadic
experiment, respectively. C and D show the number of peaks in the ball
velocity profile of the bimanual and dyadic experiment, respectively. All
plots are averaged across all participants/dyads and both with or without
haptic feedback conditions

of the two participants, the data points should be below the
diagonal line. When there was haptic feedback, all dyads
had a shorter completion time as compared to the average
individual completion time, while half of the dyads took a
longer time to complete the task when there was no haptic
feedback (Fig. 3A). A similar result could be found in the
smoothness of ball trajectory. Three out of four dyads had a
smoother trajectory when there was haptic feedback, while
only one dyad had a smoother trajectory when there was no
haptic feedback (Fig. 3B).

We also investigated whether the presence of haptic feed-
back influences the way that two hands or two partici-
pants cooperate. We compared the movement classification
between the two haptic conditions both in the bimanual
and dyadic configurations (Fig. 4). When there was haptic
feedback, the share of cooperative movement increased and
the share of single movement decreased for both bimanual
and dyadic experiments. The share of competitive movement
also decreased in the dyadic experiments.

C. Convergence of Strategy

To stabilize the ball within the target area in the shortest
possible time, participants needed to start braking when the
ball is at a specific velocity and distance to the target. We
divided the 180 trials of each condition into 6 groups of 30
trials according to the experimental order. For each group
of trials, we used ellipses to represent the range of ball



Fig. 3. Comparison between the performance of dyadic and bimanual
experiments. A and B show the performance in completion time and
trajectory smoothness, respectively. The x and y coordinates show the
relative performance of each participant with respect to their partners and
their dyad, respectively.

Fig. 4. Comparison of the movement classification between the two haptic
conditions of the dyadic and bimanual experiments. The share of each
movement class are shown in different colors.

velocity and distance to the target (See MATERIALS AND
METHODS). The size of the ellipse became smaller over
time, which indicate that participants’ strategy converged to
a subset (Fig. 5A). Moreover the variance of the strategy de-
creased over trials (Fig. 5B), which shows that the strategies
became more stable with more practice. This variance was
calculated for each participant/dyad.

D. Delay

The delay between the the handles was calculated during
all of the cooperative movements during the experiments,
using four different thresholds. Although the amount of
delay varied depending on the threshold chosen (increasing
with the threshold percentage), the relative differences across
conditions were consistent for all four thresholds (Fig 6). The
delay was always higher in dyadic experiments compared
with bimanual experiments, with a delay around 100 ms in

Fig. 5. Convergence of strategy. A, each ellipse represent the ball velocity
and distance to the target of a group of 30 trials for all participants and
dyads. B, the variance of the ball velocity and distance to the target
decreased over trials. The shaded area indicates the 95% confidence interval
of the mean.

Fig. 6. Absolute delay of each condition during the cooperative movements.
The means calculated by each threshold are marked by different grey levels.
The error bars show 95% confidence interval of the mean.

the dyadic experiments and only about 40 ms in the bimanual
experiments. Moreover, the delay in dyadic experiments
significantly decreased when there was haptic feedback (95%
confidence intervals do not overlap, Fig 6), whereas there was
little affect on the delay in the bimanual experiments with
the presence of haptic feedback.

IV. DISCUSSION
In this work, we investigated the role of haptic feedback

in bimanual and dyadic coordination of humans, to inform
the use of the physical channel of communication in physical
human-robot collaboration. Our result shows that participants
moved with shorter delay, better coordination and achieved
better performance when they can receive haptic feedback.
This is consistent with several previous studies. Takagi and
colleagues [14] showed that the performance of the worse
partner improved more when the interaction was stiffer, at
the cost of the better partner having to exert more effort.



Their model explained the process by assuming that the
partner’s target was inferred through haptics and tuned by
the coupling stiffness. Takai and colleagues [15] showed that
participants were only able to co-adapt and develop into
different roles when there was haptic feedback. Our work
extends these findings, suggesting that haptic communication
is an important channel carrying information that allows
humans to infer the intention of their partners. This becomes
even more critical in our more complex task, where the two
partners must coordinate their actions in order to successfully
complete the task due to the internal degrees of freedom.
These effects were seen despite the fact that the haptic
feedback in our experiment was limited. First, the center of
the board was not fixed by a hinge, but was connected by a
spring resulting in small forces on each hand. Secondly our
haptic devices could only generate forces, but not torques.
Nonetheless, we saw a clear effect of haptic communication
in the dyadic coordination task, both in terms of improved
performance and a reduction in the delay between the two
humans.

Our work highlights the expected importance of haptic
communication during physical interactions between humans
and robots while performing collaborative tasks. Several
studies have used haptic information to understand human
intention and enable robots to adjust accordingly [5], [7], [8].
However, haptic information may also have a large influence
on the coordination between the robot and human. Not only
should haptic information allow robots to infer more precise
inference of human intention, but it also allows them to
generate appropriate interaction forces and torques to signal
their strategy to the human. This may make up for the gap
of mutual observability and lack of theory of mind between
collaborating humans and robots previously identified as a
challenge in real-time human-robot collaboration [10].
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