226,319 research outputs found
Waveguide cooling system
An improved system is described for cooling high power waveguides by the use of cooling ducts extending along the waveguide, which minimizes hot spots at the flanges where waveguide sections are connected together. The cooling duct extends along substantially the full length of the waveguide section, and each flange at the end of the section has a through hole with an inner end connected to the duct and an opposite end that can be aligned with a flange hole in another waveguide section. Earth flange is formed with a drainage groove in its face, between the through hole and the waveguide conduit to prevent leakage of cooling fluid into the waveguide. The ducts have narrowed sections immediately adjacent to the flanges to provide room for the installation of fasteners closely around the waveguide channel
Improving fertiliser management: redefining the relationship between soil tests and crop responses for wheat in WA
Most soils in Western Australia (WA) are highly weathered with very low levels of phosphorus. WA soils initially contained adequate indigenous soil potassium for cropping but removal of potassium over time in harvested grain has gradually resulted in the some soils becoming potassium-deficient for grain production.
Fertiliser costs represent a significant part of the variable costs of growing crops in WA. Chen et al. (2009) identified the need for updated soil test interpretations due to substantial changes in farming systems, fertiliser practices and crop yield potential. The aims of this study were (1) to compile experimental data containing the standard soil test measurements and observed wheat crop yield responses for both nil and fertilised treatments across different soil types and seasons from published or unpublished sources, and (2) to critically analyse soil test-crop response relationships to derive better critical soil test values in soils and environments suitable for wheat grain production in WA
Radiatively Induced Lorentz and CPT Violation in Schwinger Constant Field Approximation
The Schwinger proper-time method is an effective calculation method,
explicitly gauge invariant and nonperturbative. We make use of this method to
investigate the radiatively induced Lorentz and CPT-violating effects in
quantum electrodynamics when an axial vector interaction term is introduced in
the fermionic sector. The induced Lorentz and CPT-violating Chern-Simons term
coincides with the one obtained using a covariant derivative expansion but
differs from the result usually obtained in other regularization schemes. A
possible ambiguity in the approach is also discussed.Comment: 11 pages, REVTeX, typos and a few equations corrected, a comment
added to the conclusions, acknowledgments adde
Recommended from our members
Lateral shearing interferometry for high-NA EUV wavefront metrology
We present a lateral shearing interferometer suitable for high-NA EUV wavefront metrology. In this interferometer, a geometric model is used to accurately characterize and predict systematic errors that come from performing interferometry at high NA. This interferometer is compatible with various optical geometries, including systems where the image plane is tilted with respect to the optical axis, as in the Berkeley MET5. Simulation results show that the systematic errors in tilted geometries can be reduced by aligning the shearing interferometer grating and detector parallel to the image plane. Subsequent residual errors can be removed by linear fitting
Space Charge Behaviour in Oil-Paper Insulation with Different Aging Condition
Oil-paper insulation system is widely used in power transformers and cables. The dielectric properties of oilpaper insulation play an important role in the reliable operation of power equipment. Oil-paper insulation degrades under a combined stress of thermal (the most important factor), electrical, mechanical, and chemical stresses during routine operations, which has great effect on the dielectric properties of oil-paper insulation [1]. Space charge in oil-paper insulation has a close relation to its electrical performance [1]. In this paper, space charge behaviour of oil-paper insulation sample with three different ageing conditions (aged for 0, 35 and 77 days) was investigated using the pulsed electroacoustic (PEA) technique. The influence of aging on the space charge dynamics behaviour was analysed. Results show that aging has great effect on the space charge dynamics of oil-paper insulation. The homocharge injection takes place under all three aging conditions above. Positive charges tend to accumulate in the sample, and increase with the oil-paper insulation sample deterioration. The time to achieve the maximum injection charge density is 30s, 2min and 10min for oil-paper insulation sample aged for 0, 35 and 77 days, respectively. The maximum charge density injected in the sample aged for 77 days is more than two times larger than the initial sample. In addition, the charge decay speed becomes much slower with the aging time increase. There is an exponential relationship between the total charge amount and the decay time. The decay time constant ? increases with the increasing deterioration condition of the oil-paper insulation sample. The ? value may be used to reflect the aging status of oil-paper insulation
- …