10 research outputs found

    q-Deformed Brownian Motion

    Full text link
    Brownian motion may be embedded in the Fock space of bosonic free field in one dimension.Extending this correspondence to a family of creation and annihilation operators satisfying a q-deformed algebra, the notion of q-deformation is carried from the algebra to the domain of stochastic processes.The properties of q-deformed Brownian motion, in particular its non-Gaussian nature and cumulant structure,are established.Comment: 6 page

    On the nonlinearity interpretation of q- and f-deformation and some applications

    Full text link
    q-oscillators are associated to the simplest non-commutative example of Hopf algebra and may be considered to be the basic building blocks for the symmetry algebras of completely integrable theories. They may also be interpreted as a special type of spectral nonlinearity, which may be generalized to a wider class of f-oscillator algebras. In the framework of this nonlinear interpretation, we discuss the structure of the stochastic process associated to q-deformation, the role of the q-oscillator as a spectrum-generating algebra for fast growing point spectrum, the deformation of fermion operators in solid-state models and the charge-dependent mass of excitations in f-deformed relativistic quantum fields.Comment: 11 pages Late

    Tomograms and other transforms. A unified view

    Full text link
    A general framework is presented which unifies the treatment of wavelet-like, quasidistribution, and tomographic transforms. Explicit formulas relating the three types of transforms are obtained. The case of transforms associated to the symplectic and affine groups is treated in some detail. Special emphasis is given to the properties of the scale-time and scale-frequency tomograms. Tomograms are interpreted as a tool to sample the signal space by a family of curves or as the matrix element of a projector.Comment: 19 pages latex, submitted to J. Phys. A: Math and Ge

    Non-commutative tomography: A tool for data analysis and signal processing

    No full text
    International audienceTomograms, a generalization of the Radon transform to arbitrary pairs of non-commuting operators, are positive bilinear transforms with a rigorous probabilistic interpretation which provide a full characterization of the signal and are robust in the presence of noise. We provide an explicit construction of tomogram transforms for many pairs of noncommuting operators in one and two dimensions and illustrations of their use for denoising, detection of small signals and component separation

    Critical point in the problem of maximizing the transition probability using measurements in an nn-level quantum system

    No full text

    Technical Design Report on Forward Detectors:FMD, T0 and V0.

    No full text

    ALICE forward detectors: FMD, TO and VO: Technical Design Report

    No full text
    corecore