765 research outputs found

    Numerical modelling of liquid droplet dynamics in microgravity

    Get PDF
    Microgravity provides ideal experimental conditions for studying highly reactive and under-cooled materials where there is no contact between the sample and the other experimental apparatus. The non-contact conditions allow material properties to be measured from the oscillating liquid droplet response to perturbations. This work investigates the impact of a strong magnetic field on these measurement processes for weakly viscous, electrically conducting droplets. We present numerical results using an axisymmetric model that employs the pseudo-spectral collocation method and a recently developed 3D model. Both numerical models have been developed to solve the equations describing the coupled electromagnetic and fluid flow processes. The models represent the changing surface shape that results from the interaction between forces inside the droplet and the surface tension imposed boundary conditions. The models are used to examine the liquid droplet dynamics in a strong DC magnetic field. In each case the surface shape is decomposed into a superposition of spherical harmonic modes. The oscillation of the individual mode coefficients is then analysed to determine the oscillation frequencies and damping rates that are then compared to the low amplitude solutions predicted by the published analytical asymptotic theory

    Educating for a Hope-Filled Future

    Get PDF
    This paper illustrates one student’s experience finding ways to pursue sustainability in a course on political narrative. The student created his own narrative for political and social change based on issues he was already deeply invested in. Tai Chi, practiced at the start of each class, facilitated this narrative creation

    Interaction of vortices in thin superconducting films and Berezinskii-Kosterlitz-Thouless transition

    Full text link
    The precondition for the BKT transition in thin superconducting films, the logarithmic intervortex interaction, is satisfied at distances short relative to Λ=2λ2/d\Lambda=2\lambda^2/d, λ\lambda is the London penetration depth of the bulk material and dd is the film thickness. For this reason, the search for the transition has been conducted in samples of the size L<ΛL<\Lambda. It is argued below that film edges turn the interaction into near exponential (short-range) thus making the BKT transition impossible. If however the substrate is superconducting and separated from the film by an insulated layer, the logarithmic intervortex interaction is recovered and the BKT transition should be observable.Comment: 4 pages, no figure

    Nanomechanical displacement detection using coherent transport in ordered and disordered graphene nanoribbon resonators

    Get PDF
    Graphene nanoribbons provide an opportunity to integrate phase-coherent transport phenomena with nanoelectromechanical systems (NEMS). Due to the strain induced by a deflection in a graphene nanoribbon resonator, coherent electron transport and mechanical deformations couple. As the electrons in graphene have a Fermi wavelength \lambda ~ a_0 = 1.4 {\AA}, this coupling can be used for sensitive displacement detection in both armchair and zigzag graphene nanoribbon NEMS. Here it is shown that for ordered as well as disordered ribbon systems of length L, a strain \epsilon ~ (w/L)^2 due to a deflection w leads to a relative change in conductance \delta G/G ~ (w^2/a_0L).Comment: 4 Pages, 4 figure

    Long range polarization attraction between two different likely charged macroions

    Full text link
    It is known that in a water solution with multivalent counterions (Z-ions), two likely charged macroions can attract each other due to correlations of Z-ions adsorbed on their surfaces. This "correlation" attraction is short-ranged and decays exponentially with increasing distance between macroions at characteristic distance A/2\pi, where A is the average distance between Z-ions on the surfaces of macroions. In this work, we show that an additional long range "polarization" attraction exists when the bare surface charge densities of the two macroions have the same sign, but are different in absolute values. The key idea is that with adsorbed Z-ions, two insulating macroions can be considered as conductors with fixed but different electric potentials. Each potential is determined by the difference between the entropic bulk chemical potential of a Z-ion and its correlation chemical potential at the surface of the macroion determined by its bare surface charge density. When the two macroions are close enough, they get polarized in such a way that their adjacent spots form a charged capacitor, which leads to attraction. In a salt free solution this polarization attractive force is long ranged: it decays as a power of the distance between the surfaces of two macroions, d. The polarization force decays slower than the van der Waals attraction and therefore is much larger than it in a large range of distances. In the presence of large amount of monovalent salt, when A/2\pi<< d<< r_s (r_s is the Debye-H\"{u}ckel screening radius), this force is still much stronger than the van der Waals attraction and the correlation attraction mentioned above.Comment: 12 pages, 7 figures. Small change in the text, no change in result

    Effects of magnetic fields on magnetohydrodynamic cylindrical and spherical Richtmyer-Meshkov instability

    Get PDF
    The effects of seed magnetic fields on the Richtmyer-Meshkov instability driven by converging cylindrical and spherical implosions in ideal magnetohydrodynamics are investigated. Two different seed field configurations at various strengths are applied over a cylindrical or spherical density interface which has a single-dominant-mode perturbation. The shocks that excite the instability are generated with appropriate Riemann problems in a numerical formulation and the effect of the seed field on the growth rate and symmetry of the perturbations on the density interface is examined. We find reduced perturbation growth for both field configurations and all tested strengths. The extent of growth suppression increases with seed field strength but varies with the angle of the field to interface. The seed field configuration does not significantly affect extent of suppression of the instability, allowing it to be chosen to minimize its effect on implosion distortion. However, stronger seed fields are required in three dimensions to suppress the instability effectively

    Bidirectional reflectance properties of planetary surface materials

    Get PDF
    Laboratory measurements using a spectrogoniometer to separate the effects of surficial texture and albedo in the characterization of planetary surface materials are discussed. An investigation of the surface of Io is discussed. A number of technical improvements to the goniometer are summarized

    Steplike electric conduction in a classical two-dimensional electron system through a narrow constriction in a microchannel

    Get PDF
    Using molecular dynamics simulation, we investigate transport properties of a classical two-dimensional electron system confined in a microchannel with a narrow constriction. As a function of the confinement strength of the constriction, the calculated conductance in the simulations exhibits steplike increases as reported in a recent experiment [D. G. Rees et al., Phys. Rev. Lett. 106, 026803 (2011)]. It is confirmed that the number of the steps corresponds to the number of stream lines of electrons through the constriction. We verify that density fluctuation plays a major role in smoothing the steps in the conductance.Comment: 11 pages, 9 figure

    Modifying the Casimir force between indium tin oxide film and Au sphere

    Full text link
    We present complete results of the experiment on measuring the Casimir force between an Au-coated sphere and an untreated or, alternatively, UV-treated indium tin oxide film deposited on a quartz substrate. Measurements were performed using an atomic force microscope in a high vacuum chamber. The measurement system was calibrated electrostatically. Special analysis of the systematic deviations is performed, and respective corrections in the calibration parameters are introduced. The corrected parameters are free from anomalies discussed in the literature. The experimental data for the Casimir force from two measurement sets for both untreated and UV-treated samples are presented. The experimental errors are determined at a 95% confidence level. It is demonstrated that the UV treatment of an I TO plate results in a significant decrease in the magnitude of the Casimir force (from 21% to 35% depending on separation). However, ellipsometry measurements of the imaginary parts of dielectric permittivities of the untreated and UV-treated samples did not reveal any significant differences. The experimental data are compared with computations in the framework of the Lifshitz theory. It is found that the data for the untreated sample are in a very good agreement with theoretical results taking into account the free charge carriers in an ITO film. For the UV-treated sample the data exclude the theoretical results obtained with account of free charge carriers. These data are in a very good agreement with computations disregarding the contribution of free carriers. According to the explanation provided, this is caused by the phase transition of the ITO film from metallic to dielectric state caused by the UV treatment. Possible applications of the discovered phenomenon in nanotechnology are discussed.Comment: 30 pages, 19 figures, 1 tabl
    corecore