31 research outputs found

    Origin of infrared light modulation in reflectance-mode photoplethysmography

    Get PDF
    © 2016 Sidorov et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.We recently pointed out the important role of dermis deformation by pulsating arterial pressure in the formation of a photoplethysmographic signal at green light. The aim of this study was to explore the role of this novel finding in near-infrared (NIR) light. A light-emitting diode (LED)-based imaging photoplethysmography (IPPG) system was used to detect spatial distribution of blood pulsations under frame-to-frame switching green and NIR illumination in the palms of 34 healthy individuals. We observed a significant increase of lightintensity modulation at the heartbeat frequency for both illuminating wavelengths after a palm was contacted with a glass plate. Strong positive correlation between data measured at green and NIR light was found, suggesting that the same signal was read independently from the depth of penetration. Analysis of the data shows that an essential part of remitted NIR light is modulated in time as a result of elastic deformations of dermis caused by variable blood pressure in the arteries. Our observations suggest that in contrast with the classical model, photoplethysmographic waveform originates from the modulation of the density of capillaries caused by the variable pressure applied to the skin from large blood vessels. Particularly, beat-to-beat transmural pressure in arteries compresses/decompresses the dermis and deforms its connective-tissue components, thus affecting the distance between the capillaries, which results in the modulation of absorption and scattering coefficients of both green and NIR light. These findings are important for the correct interpretation of this widely used medical technique, which may have novel applications in diagnosis and treatment monitoring of aging and skin diseases

    Morphological characterization of biominerals from five multicellular marine algae species

    Get PDF
    Silica biominerals are deposited as amorphous solid structures in plant cells and tissues, providing rigidity to different plant parts and assisting in defence. The shape and size of phytoliths are well established and serve as a useful tool in taxonomic analyses. For the first time we extracted and studied silica biominerals of five marine macroalgae, which we observed by light microscopy, scanning electron microscopy, and X-ray diffraction analysis (XRD). More than nine different morphotypes of phytoliths ranging from ≥ 10 to ≥ 350 μm in size were found. Some of them were phytoliths made of silica while others showed characteristics of different minerals of calcium. In our study, the “honeycomb” formations were only recorded in Laurencia tropica Yamada and pyramid tabular ones were found only in Tichocarpus crinitus (S.G. Gmelin) Ruprecht. The XRD analysis showed that they consisted of virgilite and gypsum substance, respectively. Silica phytoliths are intrinsic parts of the algae and their morphological characterization can provide the basis for palaeo-reconstruction and taxonomic investigation of brown and red algae in palaeontological studies of fossils where all organic matter has decayed

    Selective Uncoupling of Individual Mitochondria within a Cell Using a Mitochondria-Targeted Photoactivated Protonophore

    Get PDF
    Depolarization of an individual mitochondrion or small clusters of mitochondria within cells has been achieved using a photoactivatable probe. The probe is targeted to the matrix of the mitochondrion by an alkyltriphenylphosphonium lipophilic cation and releases the protonophore 2,4-dinitrophenol locally in predetermined regions in response to directed irradiation with UV light via a local photolysis system. This also provides a proof of principle for the general temporally and spatially controlled release of bioactive molecules, pharmacophores, or toxins to mitochondria with tissue, cell, or mitochondrion specificity

    Origin of infrared light modulation in reflectance-mode photoplethysmography

    Get PDF
    © 2016 Sidorov et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.We recently pointed out the important role of dermis deformation by pulsating arterial pressure in the formation of a photoplethysmographic signal at green light. The aim of this study was to explore the role of this novel finding in near-infrared (NIR) light. A light-emitting diode (LED)-based imaging photoplethysmography (IPPG) system was used to detect spatial distribution of blood pulsations under frame-to-frame switching green and NIR illumination in the palms of 34 healthy individuals. We observed a significant increase of lightintensity modulation at the heartbeat frequency for both illuminating wavelengths after a palm was contacted with a glass plate. Strong positive correlation between data measured at green and NIR light was found, suggesting that the same signal was read independently from the depth of penetration. Analysis of the data shows that an essential part of remitted NIR light is modulated in time as a result of elastic deformations of dermis caused by variable blood pressure in the arteries. Our observations suggest that in contrast with the classical model, photoplethysmographic waveform originates from the modulation of the density of capillaries caused by the variable pressure applied to the skin from large blood vessels. Particularly, beat-to-beat transmural pressure in arteries compresses/decompresses the dermis and deforms its connective-tissue components, thus affecting the distance between the capillaries, which results in the modulation of absorption and scattering coefficients of both green and NIR light. These findings are important for the correct interpretation of this widely used medical technique, which may have novel applications in diagnosis and treatment monitoring of aging and skin diseases

    Origin of infrared light modulation in reflectance-mode photoplethysmography

    No full text
    © 2016 Sidorov et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.We recently pointed out the important role of dermis deformation by pulsating arterial pressure in the formation of a photoplethysmographic signal at green light. The aim of this study was to explore the role of this novel finding in near-infrared (NIR) light. A light-emitting diode (LED)-based imaging photoplethysmography (IPPG) system was used to detect spatial distribution of blood pulsations under frame-to-frame switching green and NIR illumination in the palms of 34 healthy individuals. We observed a significant increase of lightintensity modulation at the heartbeat frequency for both illuminating wavelengths after a palm was contacted with a glass plate. Strong positive correlation between data measured at green and NIR light was found, suggesting that the same signal was read independently from the depth of penetration. Analysis of the data shows that an essential part of remitted NIR light is modulated in time as a result of elastic deformations of dermis caused by variable blood pressure in the arteries. Our observations suggest that in contrast with the classical model, photoplethysmographic waveform originates from the modulation of the density of capillaries caused by the variable pressure applied to the skin from large blood vessels. Particularly, beat-to-beat transmural pressure in arteries compresses/decompresses the dermis and deforms its connective-tissue components, thus affecting the distance between the capillaries, which results in the modulation of absorption and scattering coefficients of both green and NIR light. These findings are important for the correct interpretation of this widely used medical technique, which may have novel applications in diagnosis and treatment monitoring of aging and skin diseases

    Origin of infrared light modulation in reflectance-mode photoplethysmography

    No full text
    © 2016 Sidorov et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.We recently pointed out the important role of dermis deformation by pulsating arterial pressure in the formation of a photoplethysmographic signal at green light. The aim of this study was to explore the role of this novel finding in near-infrared (NIR) light. A light-emitting diode (LED)-based imaging photoplethysmography (IPPG) system was used to detect spatial distribution of blood pulsations under frame-to-frame switching green and NIR illumination in the palms of 34 healthy individuals. We observed a significant increase of lightintensity modulation at the heartbeat frequency for both illuminating wavelengths after a palm was contacted with a glass plate. Strong positive correlation between data measured at green and NIR light was found, suggesting that the same signal was read independently from the depth of penetration. Analysis of the data shows that an essential part of remitted NIR light is modulated in time as a result of elastic deformations of dermis caused by variable blood pressure in the arteries. Our observations suggest that in contrast with the classical model, photoplethysmographic waveform originates from the modulation of the density of capillaries caused by the variable pressure applied to the skin from large blood vessels. Particularly, beat-to-beat transmural pressure in arteries compresses/decompresses the dermis and deforms its connective-tissue components, thus affecting the distance between the capillaries, which results in the modulation of absorption and scattering coefficients of both green and NIR light. These findings are important for the correct interpretation of this widely used medical technique, which may have novel applications in diagnosis and treatment monitoring of aging and skin diseases

    Dynamic Denisyuk holograms in cubic photorefractive crystals

    No full text
    Theoretical and experimental studies of the interaction of two counterpropagating light waves on dynamic reflection gratings formed in the Denisyuk scheme in cubic photorefractive crystals due to the diffusion mechanism of the charge transfer are considered. The results are presented which demonstrate the possibility of using dynamic photorefractive Denisyuk holograms to design adaptive elements of measuring systems based on optical and fiberoptic interferometers

    Three modes of the nonstationary holographic current excitation in a gallium oxide crystal

    No full text
    We report the nonstationary holographic current excitation in a β-Ga2O3 crystal at light wavelength λ=457 nm\lambda=457\ \text{nm} . The material demonstrates insulating properties and high transparency for visible light, but this, however, does not prevent the dynamic space-charge grating formation and the holographic current observation for various external electric fields —zero, dc and ac ones. The signal amplitude is measured and analyzed vs. the frequency of phase modulation, spatial frequency and electric field value. The main photoelectric parameters such as specific photoconductivity, sensor responsivity and diffusion length of carriers are determined for the blue region of spectrum
    corecore