1,740 research outputs found

    The Effects of Deep Breathing and Positive Imagery on Stress and Coherence Levels among College-Age Women

    Get PDF
    Stress is steadily becoming a problem of epidemic proportions in American society. Diseases and other health problems that are a direct result of high, chronic stress levels are on the rise. As bad as they are, the physical effects of stress are not the only concern. There are also mental and emotional concerns to increased and continuous stress levels. It is therefore vitally important for people to learn effective methods for reducing stress. This study investigates two techniques done together, deep breathing and positive imagery, for their effectiveness in reducing stress and increasing coherence. The sample consisted of thirty 18-26 year-old female college students at Liberty University who volunteered and were randomly placed into either an experimental group or a control group. The hypothesis was that the techniques would increase coherence, which occurs when the heart and brain are perfectly synchronized, and thereby reduce stress. Results showed that the techniques effectively reduced low coherence levels and increased high coherence levels, indicating a reduction in stress

    Public Utilities Commission

    Get PDF

    Public Utilities Commission

    Get PDF

    Public Utilities Commission

    Get PDF

    Microencapsulated Dopamine (DA)-Induced Restitution of Function in 6-OHDA-Denervated Rat Striatum in vivo: Comparison Between Two Microsphere Excipients

    Get PDF
    Biodegradable controlled-release microsphere systems made with the biocompatible biodegradable polyester excipient poly [DL lactide-co-glycolide] constitute an exciting new technology for drug delivery to the central nervous system (CNS). The present study describes functional observations indicating that implantation of dopamine (DA) microspheres encapsulated within two different polymer excipients into denervated- striatal tissue assures a prolonged release of the transmitter in vivo. Moreover, in this regard, the results show that there were clear cut temporal differences in the effect of the two DA microsphere formulations compared in this study, probably reflecting variations in the actual composition (i.e., lactide to glycolide ratio) of the two copolymer excipients examined. This technology has considerable potential for basic research with possible clinical application

    Time variability of Neptune's horizontal and vertical cloud structure revealed by VLT/SINFONI and Gemini/NIFS from 2009 to 2013

    Get PDF
    New observations of Neptune's clouds in the near infrared were acquired in October 2013 with SINFONI on ESO's Very Large Telescope (VLT) in Chile. SINFONI is an Integral Field Unit spectrometer returning a 64 × 64 pixel image with 2048 wavelengths. Image cubes in the J-band (1.09-1.41 μm) and H-band (1.43-1.87 μm) were obtained at spatial resolutions of 0.1″and 0.025″per pixel, while SINFONI's adaptive optics provided an effective resolution of approximately 0.1″. Image cubes were obtained at the start and end of three successive nights to monitor the temporal development of discrete clouds both at short timescales (i.e. during a single night) as well as over the longer period of the three-day observing run. These observations were compared with similar H-band observations obtained in September 2009 with the NIFS Integral Field Unit spectrometer on the Gemini-North telescope in Hawaii, previously reported by Irwin et al. (2011) [Icarus, 216, 141-158], and previously unreported Gemini/NIFS observations at lower spatial resolution made in 2011.We find both similarities and differences between these observations, spaced over four years. The same overall cloud structure is seen with high, bright clouds visible at mid-latitudes (30-40°N,S), with slightly lower clouds observed at lower latitudes, together with small discrete clouds seen circling the pole at a latitude of approximately 60°S. However, while discrete clouds were visible at this latitude at both the main cloud deck level (at 2-3 bar) and in the upper troposphere (100-500 mb) in 2009, no distinct deep (2-3 bar), discrete circumpolar clouds were visible in 2013, although some deep clouds were seen at the southern edge of the main cloud belt at 30-40°S, which have not been observed before. The nature of the deep sub-polar discrete clouds observed in 2009 is intriguing. While it is possible that in 2013 these deeper clouds were masked by faster moving, overlying features, we consider that it is unlikely that this should have happened in 2013, but not in 2009 when the upper-cloud activity was generally similar. Meanwhile, the deep clouds seen at the southern edge of the main cloud belt at 30-40°S in 2013, should also have been detectable in 2009, but were not seen. Hence, these observations may have detected a real temporal variation in the occurrence of Neptune's deep clouds, pointing to underlying variability in the convective activity at the pressure of the main cloud deck at 2-3 bar near Neptune's south pole and also in the main observable cloud belt at 30-40°S.</p
    • …
    corecore