141 research outputs found

    Fast readout algorithm for cylindrical beam position monitors providing good accuracy for particle bunches with large offsets

    Full text link
    A simple, analytically correct algorithm is developed for calculating pencil beam coordinates using the signals from an ideal cylindrical particle beam position monitor (BPM) with four pickup electrodes (PUEs) of infinitesimal widths. The algorithm is then applied to simulations of realistic BPMs with finite width PUEs. Surprisingly small deviations are found. Simple empirically determined correction terms reduce the deviations even further. The algorithm is then used to study the impact of beam-size upon the precision of BPMs in the non-linear region. As an example of the data acquisition speed advantage, a FPGA-based BPM readout implementation of the new algorithm has been developed and characterized. Finally,the algorithm is tested with BPM data from the Cornell Preinjector.Comment: 21 pages, 17 figure

    Damping vs. Clamping to Mitigate the RHIC Triplet Oscillations

    Get PDF
    N/

    Higher order mode damper for low energy RHIC electron cooler SRF booster cavity

    Full text link
    To improve RHIC luminosity for heavy ion beam energies below 10 GeV/nucleon, the Low Energy RHIC electron Cooler (LEReC) is currently under commissioning at BNL. The Linac of LEReC is designed to deliver a 1.6 MeV to 2.6 MeV electron beam, with rms dp/p less than 5e-4. A 704 MHz superconducting radio frequency (SRF) booster cavity in this Linac provides up to 2.2 MeV accelerating voltage. With such a low energy and very demanding energy spread requirement, control of Higher Order Modes (HOMs) in the cavities becomes critical and needs to be carefully evaluated to ensure minimum impact on the beam. In this paper, we report the multiphysics design of the HOM damper for this cavity to meet the energy spread requirement, as well as experimental results of the cavity with and without the HOM damper.Comment: 9 pages, 7 figure

    Relativistic corrections to fractal analyses of the galaxy distribution

    Get PDF
    The effect of curvature on the results of fractal analyses of the galaxy distribution is investigated. We show that, if the universe satisfies the criteria of a wide class of parabolic homogeneous models, the observers measuring the fractal index with the integrated conditional density procedure may use the Hubble formula, without having to allow for curvature, out to distances of 600 Mpc, and possibly far beyond. This contradicts a previous claim by Ribeiro (1995) that, in the Einstein-de Sitter case, relativistic corrections should be taken into account at much smaller scales. We state for the class of cosmological models under study, and give grounds for conjecture for others, that the averaging procedure has a smoothing effect and that, therefore, the redshift-distance relation provides an upper limit to the relativistic corrections involved in such analyses.Comment: 9 LaTeX pages, accepted for publication in Astronomy and Astrophysics 14 November 200
    • …
    corecore