2,117 research outputs found

    Harmonic Analysis of Linear Fields on the Nilgeometric Cosmological Model

    Full text link
    To analyze linear field equations on a locally homogeneous spacetime by means of separation of variables, it is necessary to set up appropriate harmonics according to its symmetry group. In this paper, the harmonics are presented for a spatially compactified Bianchi II cosmological model -- the nilgeometric model. Based on the group structure of the Bianchi II group (also known as the Heisenberg group) and the compactified spatial topology, the irreducible differential regular representations and the multiplicity of each irreducible representation, as well as the explicit form of the harmonics are all completely determined. They are also extended to vector harmonics. It is demonstrated that the Klein-Gordon and Maxwell equations actually reduce to systems of ODEs, with an asymptotic solution for a special case.Comment: 28 pages, no figures, revised version to appear in JM

    Scalar fields on SL(2,R) and H^2 x R geometric spacetimes and linear perturbations

    Full text link
    Using appropriate harmonics, we study the future asymptotic behavior of massless scalar fields on a class of cosmological vacuum spacetimes. The spatial manifold is assumed to be a circle bundle over a higher genus surface with a locally homogeneous metric. Such a manifold corresponds to the SL(2,R)-geometry (Bianchi VIII type) or the H^2 x R-geometry (Bianchi III type). After a technical preparation including an introduction of suitable harmonics for the circle-fibered Bianchi VIII to separate variables, we derive systems of ordinary differential equations for the scalar field. We present future asymptotic solutions for these equations in a special case, and find that there is a close similarity with those on the circle-fibered Bianchi III spacetime. We discuss implications of this similarity, especially to (gravitational) linear perturbations. We also point out that this similarity can be explained by the "fiber term dominated behavior" of the two models.Comment: 23 pages, no figures, to be published in Class. Quant. Gravi

    On the equivalence of two deformation schemes in quantum field theory

    Get PDF
    Two recent deformation schemes for quantum field theories on the two-dimensional Minkowski space, making use of deformed field operators and Longo-Witten endomorphisms, respectively, are shown to be equivalent.Comment: 14 pages, no figure. The final version is available under Open Access. CC-B

    Effect of a standardised dietary restriction protocol on multiple laboratory strains of Drosophila melanogaster

    Get PDF
    Background: Outcomes of lifespan studies in model organisms are particularly susceptible to variations in technical procedures. This is especially true of dietary restriction, which is implemented in many different ways among laboratories. Principal Findings: In this study, we have examined the effect of laboratory stock maintenance, genotype differences and microbial infection on the ability of dietary restriction (DR) to extend life in the fruit fly Drosophila melanogaster. None of these factors block the DR effect. Conclusions: These data lend support to the idea that nutrient restriction genuinely extends lifespan in flies, and that any mechanistic discoveries made with this model are of potential relevance to the determinants of lifespan in other organisms

    Construction of wedge-local nets of observables through Longo-Witten endomorphisms. II

    Get PDF
    In the first part, we have constructed several families of interacting wedge-local nets of von Neumann algebras. In particular, there has been discovered a family of models based on the endomorphisms of the U(1)-current algebra of Longo-Witten. In this second part, we further investigate endomorphisms and interacting models. The key ingredient is the free massless fermionic net, which contains the U(1)-current net as the fixed point subnet with respect to the U(1) gauge action. Through the restriction to the subnet, we construct a new family of Longo-Witten endomorphisms on the U(1)-current net and accordingly interacting wedge-local nets in two-dimensional spacetime. The U(1)-current net admits the structure of particle numbers and the S-matrices of the models constructed here do mix the spaces with different particle numbers of the bosonic Fock space.Comment: 33 pages, 1 tikz figure. The final version is available under Open Access. CC-B

    Why Hybrid Meson Coupling to Two S-wave Mesons is Suppressed

    Full text link
    We introduce strong interaction selection rules for the two-body decay and production of hybrid and conventional mesons coupling to two S-wave hybrid or conventional mesons. The rules arise from symmetrization in states in the limit of non-relativistically moving quarks. The conditions under which hybrid coupling to S-wave states is suppressed are determined by the rules, and the nature of their breaking is indicated.Comment: 9 pages, LaTeX, 1 eps figures, uses epsf. Minor modifications, Title chang

    Speed of Sound in the Mass Varying Neutrinos Scenario

    Full text link
    We discuss about the speed of sound squared in the Mass Varying Neutrinos scenario (MaVaNs). Recently, it was argued that the MaVaNs has a catastrophic instability which is the emergence of an imaginary speed of sound at the non-relativistic limit of neutrinos. As the result of this instability, the neutrino-acceleron fluid cannot act as the dark energy. However, it is found that the speed of sound squared in the neutrino-acceleron fluid could be positive in our model. We examine the speed of sound in two cases of the scalar potential. One is the small fractional power-law potential and another is the logarithmic one. The power-law potential model with the right-handed neutrinos gives a stable one.Comment: 17 pages, References added, minor modification

    Embedding the Texture of the Neutrino Mass Matrix into the MaVaNs Scenario

    Full text link
    We have embedded the texture of the neutrino mass matrix with three families into the MaVaNs scenario. We take the power-law potential of the acceleron field and a typical texture of active neutrinos, which is derived by the D_4 symmetry and predicts the maximal mixing of the atmospheric neutrino and the vanishing U_{e3}. The effect of couplings among the dark fermion and active neutrinos are studied by putting the current cosmological data and the terrestrial neutrino experimental data. It is found that the neutrino flavor mixings evolve as well as the neutrino masses. Especially, U_{e3} develops into the non-vanishing one and \theta_{atm} deviates from the maximal mixing due to couplings among the dark fermion and active neutrinos.Comment: Sections 3 and 4 are changed and one table is added. 16pages and 2 figure

    Perturbations of Spatially Closed Bianchi III Spacetimes

    Get PDF
    Motivated by the recent interest in dynamical properties of topologically nontrivial spacetimes, we study linear perturbations of spatially closed Bianchi III vacuum spacetimes, whose spatial topology is the direct product of a higher genus surface and the circle. We first develop necessary mode functions, vectors, and tensors, and then perform separations of (perturbation) variables. The perturbation equations decouple in a way that is similar to but a generalization of those of the Regge--Wheeler spherically symmetric case. We further achieve a decoupling of each set of perturbation equations into gauge-dependent and independent parts, by which we obtain wave equations for the gauge-invariant variables. We then discuss choices of gauge and stability properties. Details of the compactification of Bianchi III manifolds and spacetimes are presented in an appendix. In the other appendices we study scalar field and electromagnetic equations on the same background to compare asymptotic properties.Comment: 61 pages, 1 figure, final version with minor corrections, to appear in Class. Quant. Gravi

    What Does mu-tau Symmetry Imply about Neutrino Mixings?

    Full text link
    The requirement of the mu-tau symmetry in the neutrino sector that yields the maximal atmospheric neutrino mixing is shown to yield either sin(\theta_{13})=0 (referred to as C1)) or sin(\theta_{12})=0 (referred to as C2)), where \theta_{12(13)} stands for the solar (reactor) neutrino mixing angle. We study general properties possessed by approximately mu-tau symmetric textures. It is argued that the tiny mu-tau symmetry breaking generally leads to cos(2\theta_{23}) \simsin(\theta_{13}) for C1) and cos(2\theta_{23}) \sim \Delta m^2_\odot/\Delta m^2_{atm}(\equiv R) for C2), which indicates that the smallness of cos(2\theta_{23}) is a good measure of the mu-tau symmetry breaking, where \Delta m^2_{atm} (\Delta m^2_\odot) stands for the square mass differences of atmospheric (solar) neutrinos. We further find that the relation R \sim sin^2(\theta_{13}) arises from contributions of O(sin^2(\theta_{13})) in the estimation of the neutrino masses (m_{1,2,3}) for C1), and that possible forms of textures are strongly restricted to realize sin^2(2\theta_{12})=O(1) for C2). To satisfy R \sim sin^2(\theta_{13}) for C1), neutrinos exhibit the inverted mass hierarchy, or the quasi degenerate mass pattern with | m_{1,2,3}| \sim O(\sqrt{\Delta m^2_{atm}}), and, to realize sin^2(2\theta_{12})=O(1) for C2), there should be an additional small parameter \eta whose size is comparable to that of the mu-tau symmetry breaking parameter \epsilon, giving tan(2\theta_{12}) \sim \epsilon/\eta with \eta \sim \epsilon to be compatible with the observed large mixing.Comment: 10 pages, title slightly modified, comments added in the introdction, typos corrected, references updated, version to appear in Physical Reviews
    • …
    corecore