4,343 research outputs found

    Spin melting and refreezing driven by uniaxial compression on a dipolar hexagonal plate

    Full text link
    We investigate freezing characteristics of a finite dipolar hexagonal plate by the Monte Carlo simulation. The hexagonal plate is cut out from a piled triangular lattice of three layers with FCC-like (ABCABC) stacking structure. In the present study an annealing simulation is performed for the dipolar plate uniaxially compressed in the direction of layer-piling. We find spin melting and refreezing driven by the uniaxial compression. Each of the melting and refreezing corresponds one-to-one with a change of the ground states induced by compression. The freezing temperatures of the ground-state orders differ significantly from each other, which gives rise to the spin melting and refreezing of the present interest. We argue that these phenomena are originated by a finite size effect combined with peculiar anisotropic nature of the dipole-dipole interaction.Comment: Proceedings of the Highly Frustrated Magnetism (HFM2006) conference. To appear in a special issue of J. Phys. Condens. Matte

    Oscillatory convective modes in red giants: a possible explanation of the long secondary periods

    Full text link
    We discuss properties of oscillatory convective modes in low-mass red giants, and compare them with observed properties of the long secondary periods (LSPs) of semi-regular red giant variables. Oscillatory convective modes are very nonadiabatic g^{-} modes and they are present in luminous stars, such as red giants with \log L/{\rm L}_\odot \ga 3. Finite amplitudes for these modes are confined to the outermost nonadiabatic layers, where the radiative energy flux is more important than the convective energy flux. The periods of oscillatory convection modes increase with luminosity, and the growth times are comparable to the oscillation periods. The LSPs of red giants in the Large Magellanic Cloud (LMC) are observed to lie on a distinct period-luminosity sequence called sequence D. This sequence D period-luminosity relation is roughly consistent with the predictions for dipole oscillatory convective modes in AGB models if we adopt a mixing length of 1.2 pressure scale height (α=1.2\alpha = 1.2). However, the effective temperature of the red-giant sequence of the LMC is consistent to models with α=1.9\alpha=1.9, which predict periods too short by a factor of two.Comment: 7 pages, 6 figures, accepted for publication in MNRA

    Gravitino and Axino SuperWIMPs

    Get PDF
    Gravitinos and axinos produced in the late decays of other supersymmetric particles are well-motivated dark matter (DM) candidates, whose experimental evidences are very distinctive and different from other standard candidates, as thermal produced neutralinos in similar supersymmetric models. In particular, charged sleptons could appear stable because of the length of its lifetime. The direct production of such particles at both the Large Hadron Collider (LHC) and a future International Linear Collider (ILC) can give not only a clear signature of supersymmetry but also the first non-gravitational evidence of dark matter.Comment: 4 pages, LaTeX, 1 figure, Updated references. To appear in Proceedings of SUSY06, the 14th International Conference on Supersymmetry and the Unification of Fundamental Interactions, UC Irvine, California, 12-17 June 200

    Evolution of Pliocene climate cyclicity at Hole 806B (5-2 Ma); oxygen isotope record

    Get PDF
    A detailed Pliocene oxygen isotope record from the Ontong Java Plateau, based on measurements of the surface-dwelling planktonic foraminifer Globigerinoides sacculifer, was produced for the period from 5 to 2 Ma. The record documents major long and short-term climate changes. The results show periods of enhanced ice volume at 4.6 to 4.3 Ma and after 2.85 Ma, a long-term warming trend from 4.1 to 3.7 Ma, and a distinct cooling trend that was initiated at 3.5 Ma and progressed through the initiation of large-scale Northern Hemisphere glaciation after 2.85 Ma (according to the time scale of Shackleton and others proposed in 1990). Periods of high average ice volumes also show the highest δ 1 8 amplitudes. The pattern of climate cyclicity changed markedly at about 2.85 Ma. Earlier times were marked by high-frequency variability at the precessional frequencies or even higher frequencies, pointing to low-latitude processes as a main controlling factor driving planktonic δ 1 8 variability in this period. The high-frequency variability is not coherent with insolation and points to strong nonlinearity in the way the climate system responded to orbital forcing before the onset of large scale Northern Hemisphere glaciation. After 3 Ma, stronger 41-k.y. cyclicity appears in the record. The shift in pattern is clearest around 2.85 Ma (according to the time scale proposed by Shackleton and others in 1990), 100-200 k.y. before the most dramatic spread of Northern Hemisphere ice sheets. This indicates that high-latitude processes from this point on began to take over and influence most strongly the δ 1 8 record, which now reflects ice-volume fluctuations related to the climatic effects of obliquity forcing on the seasonality of high-latitude areas, most probably in the Northern Hemisphere. The general Pliocene trend is that high-latitude climate sensitivity and instability was increasing, and the causal factors producing the intensified glacial cyclicity during the Pliocene must be factors that enhance cooling and climate sensitivity in the subarctic areas

    Automatic normal orientation in point clouds of building interiors

    Full text link
    Orienting surface normals correctly and consistently is a fundamental problem in geometry processing. Applications such as visualization, feature detection, and geometry reconstruction often rely on the availability of correctly oriented normals. Many existing approaches for automatic orientation of normals on meshes or point clouds make severe assumptions on the input data or the topology of the underlying object which are not applicable to real-world measurements of urban scenes. In contrast, our approach is specifically tailored to the challenging case of unstructured indoor point cloud scans of multi-story, multi-room buildings. We evaluate the correctness and speed of our approach on multiple real-world point cloud datasets
    corecore