180 research outputs found

    Space Charge Limited Transport and Time of Flight Measurements in Tetracene Single Crystals: a Comparative Study

    Full text link
    We report on a systematic study of electronic transport in tetracene single crystals by means of space charge limited current spectroscopy and time of flight measurements. Both II-VV and time of flight measurements show that the room-temperature effective hole-mobility reaches values close to μ1\mu \simeq 1 cm2^2/Vs and show that, within a range of temperatures, the mobility increases with decreasing temperature. The experimental results further allow the characterization of different aspects of the tetracene crystals. In particular, the effects of both deep and shallow traps are clearly visible and can be used to estimate their densities and characteristic energies. The results presented in this paper show that the combination of II-VV measurements and time of flight spectroscopy is very effective in characterizing several different aspects of electronic transport through organic crystals.Comment: Accepted by J. Appl. Phys.; tentatively scheduled for publication in the January 15, 2004 issue; minor revisions compared to previous cond-mat versio

    Nuclear dynamics of singlet exciton fission: a direct observation in pentacene single crystals

    Get PDF
    Singlet exciton fission (SEF) is a key process in the development of efficient opto-electronic devices. An aspect that is rarely probed directly, and yet has a tremendous impact on SEF properties, is the nuclear structure and dynamics involved in this process. Here we directly observe the nuclear dynamics accompanying the SEF process in single crystal pentacene using femtosecond electron diffraction. The data reveal coherent atomic motions at 1 THz, incoherent motions, and an anisotropic lattice distortion representing the polaronic character of the triplet excitons. Combining molecular dynamics simulations, time-dependent density functional theory and experimental structure factor analysis, the coherent motions are identified as collective sliding motions of the pentacene molecules along their long axis. Such motions modify the excitonic coupling between adjacent molecules. Our findings reveal that long-range motions play a decisive part in the disintegration of the electronically correlated triplet pairs, and shed light on why SEF occurs on ultrafast timescales

    Strong Connections on Quantum Principal Bundles

    Full text link
    A gauge invariant notion of a strong connection is presented and characterized. It is then used to justify the way in which a global curvature form is defined. Strong connections are interpreted as those that are induced from the base space of a quantum bundle. Examples of both strong and non-strong connections are provided. In particular, such connections are constructed on a quantum deformation of the fibration S2>RP2S^2 -> RP^2. A certain class of strong Uq(2)U_q(2)-connections on a trivial quantum principal bundle is shown to be equivalent to the class of connections on a free module that are compatible with the q-dependent hermitian metric. A particular form of the Yang-Mills action on a trivial U\sb q(2)-bundle is investigated. It is proved to coincide with the Yang-Mills action constructed by A.Connes and M.Rieffel. Furthermore, it is shown that the moduli space of critical points of this action functional is independent of q.Comment: AMS-LaTeX, 40 pages, major revision including examples of connections over a quantum real projective spac

    The Weyl bundle as a differentiable manifold

    Full text link
    Construction of an infinite dimensional differentiable manifold R{\mathbb R}^{\infty} not modelled on any Banach space is proposed. Definition, metric and differential structures of a Weyl algebra and a Weyl algebra bundle are presented. Continuity of the \circ-product in the Tichonov topology is proved. Construction of the *-product of the Fedosov type in terms of theory of connection in a fibre bundle is explained.Comment: 31 pages; revised version - some typoes have been eliminated, notation has been simplifie

    Structural Transitions and Global Minima of Sodium Chloride Clusters

    Full text link
    In recent experiments on sodium chloride clusters structural transitions between nanocrystals with different cuboidal shapes were detected. Here we determine reaction pathways between the low energy isomers of one of these clusters, (NaCl)35Cl-. The key process in these structural transitions is a highly cooperative rearrangement in which two parts of the nanocrystal slip past one another on a {110} plane in a direction. In this way the nanocrystals can plastically deform, in contrast to the brittle behaviour of bulk sodium chloride crystals at the same temperatures; the nanocrystals have mechanical properties which are a unique feature of their finite size. We also report and compare the global potential energy minima for (NaCl)NCl- using two empirical potentials, and comment on the effect of polarization.Comment: extended version, 13 pages, 8 figures, revte

    Effect of Impurities on Pentacene Thin Film Growth for Field-Effect Transistors

    Full text link
    Pentacenequinone (PnQ) impurities have been introduced into a pentacene source material at number densities from 0.001 to 0.474 to quantify the relative effects of impurity content and grain boundary structure on transport in pentacene thin-film transistors. Atomic force microscopy (AFM) and electrical measurements of top-contact pentacene thin-film transistors have been employed to directly correlate initial structure and final film structures, with the device mobility as a function of added impurity content. The results reveal a factor four decrease in mobility without significant changes in film morphology for source PnQ number fractions below ~0.008. For these low concentrations, the impurity thus directly influences transport, either as homogeneously distributed defects or by concentration at the otherwise-unchanged grain boundaries. For larger impurity concentrations, the continuing strong decrease in mobility is correlated with decreasing grain size, indicating an impurity-induced increase in the nucleation of grains during early stages of film growth.Comment: 18 pages, 4 Figures, 1 Tabl

    RFID in metallic environment

    No full text
    In this paper we will describe some tag-technologies suitable for applications which require mounting the tags on or inside a metallic surrounding. It will describe the properties of a tag for UHF, a tag for HF/LF and give a short overview of the envisioned applications
    corecore