5,528 research outputs found
Goplana Dioscoreae-Alatae Nom. Nov and Other Uredinales On Dioscoreaceae: Nomenclature and Taxonomy
Among the sixteen species of rust fungi described on Dioscoreaceae, three require replacement names. This paper re-describes and proposes Goplana dioscoreae-alatae as a replacement name for Goplana dioscoreae Cummins, nom. illegit. We also propose Uredo dioscoreae-doryphorae as a replacement name for Uredo spinulosa Y. Ono, nom. illegit.; and Aecidium tumbayensis as a replacement name for Aecidium dioscoreae J.C. Lindq., nom. illegit. We discuss nomenclatural controversies surrounding these taxa
On the origin of the March 5, 1979 gamma ray transient: A vibrating neutron star in the Large Magellanic Cloud
It is proposed that a vibrating neutron star in the Large Magellanic Cloud is the source of the March 5 transient. Neutron star vibrations transport energy rapidly to the surface, heat the atmosphere by wave dissipation, and decay by gravitational radiation reaction. The electromagnetic emission arises from e(+)-e(-) pairs which cool and annihilate in the strong magnetic field of the neutron star. The field also confines the pairs, and this allows the production of the redshifted annihilation feature observed in the data. The redshift implies a gravitational radiation damping time which agrees with the 0.15 second duration of the impulsive phase of the event. Thus, the March 5 transient may be both the first detection of a vibrating neutron star and indirect evidence for gravitational radiation
Gamma ray spectroscopy in astrophysics
Experimental and theoretical aspects of gamma ray spectroscopy in high energy astrophysics are discussed. Line spectra from solar, stellar, planetary, and cosmic gamma rays are examined as well as HEAO investigations, the prospects of a gamma ray observatory, and follow-on X-ray experiments in space
Recommended from our members
Exosomes regulate neurogenesis and circuit assembly.
Exosomes are thought to be released by all cells in the body and to be involved in intercellular communication. We tested whether neural exosomes can regulate the development of neural circuits. We show that exosome treatment increases proliferation in developing neural cultures and in vivo in dentate gyrus of P4 mouse brain. We compared the protein cargo and signaling bioactivity of exosomes released by hiPSC-derived neural cultures lacking MECP2, a model of the neurodevelopmental disorder Rett syndrome, with exosomes released by isogenic rescue control neural cultures. Quantitative proteomic analysis indicates that control exosomes contain multiple functional signaling networks known to be important for neuronal circuit development. Treating MECP2-knockdown human primary neural cultures with control exosomes rescues deficits in neuronal proliferation, differentiation, synaptogenesis, and synchronized firing, whereas exosomes from MECP2-deficient hiPSC neural cultures lack this capability. These data indicate that exosomes carry signaling information required to regulate neural circuit development
Shock Deformation in Zircon, a Comparison of Results from Shock-Reverberation and Single-Shock Experiments
The utility of the mineral zircon, ZrSiO4, as a shock-metamorphic geobarometer and geochronometer, has been steadily growing within the planetary science community. Zircon is an accessory phase found in many terrestrial rock types, lunar samples, lunar meteorites, martian meteorites and various other achondrites. Because zircon is refractory and has a high closure temperature for Pb diffusion, it has been used to determine the ages of some of the oldest material on Earth and elsewhere in the Solar System. Furthermore, major (O) and trace-element (REE, Ti, Hf) abundances and isotope compositions of zircon help characterize the petrogenetic environments and sources from which they crystallized. The response of zircon to impact-induced shock deformation is predominantly crystallographic, including dislocation creep and the formation of planar and sub-planar, low-angle grain boundaries; the formation of mechanical {112} twins; transformation to the high pressure polymorph reidite; the development of polycrystalline microtextures; and dissociation to the oxide constituents SiO2 and ZrO2. Shock microstructures can also variably affect the U- Pb isotope systematics of zircon and, in some instances, be used to constrain the impact age. While numerous studies have characterized shock deformation in zircon recovered from a variety of terrestrial impact craters and ejecta deposits and Apollo samples, experimental studies of shock deformation in zircon are limited to a handful of examples in the literature. In addition, the formation conditions (e.g., P, T) of various shock microstructures, such as planar-deformation bands, twins, and reidite lamellae, remain poorly con-strained. Furthermore, previous shocked-zircon experimental charges have not been analyzed using modern analytical equipment. This study will therefore under-take an new set of zircon shock experiments, which will then be microstructurally characterized using state-of-the-art instrumentation within the Astromaterials Research and Exploration Science Division (ARES), NASA Johnson Space Center
Where is SGR1806-20?
We apply a statistical method to derive very precise locations for soft gamma
repeaters using data from the interplanetary network. We demonstrate the
validity of the method by deriving a 600 arcsec^2 error ellipse for SGR1900+14
whose center agrees well with the VLA source position. We then apply it to
SGR1806-20, for which we obtain a 230 arcsec^2 error ellipse, the smallest
burst error box to date. We find that the most likely position of the source
has a small but significant displacement from that of the non-thermal core of
the radio supernova remnant G10.0-0.3, which was previously thought to be the
position of the repeater. We propose a different model to explain the changing
supernova remnant morphology and the positions of the luminous blue variable
and the bursting source.Comment: 12 pages and 2 color figures, accepted for publication in
Astrophysical Journal Letter
Helios-2 Vela-Ariel-5 gamma-ray burst source position
The gamma-ray burst of 28 January 1976, one of 18 events thus far detected in interplanetary space with Helios-2, was also observed with the Vela-5A, -6A and the Ariel-5 satellites. A small source field is obtained from the intersection of the region derived from the observed time delays between Helios-2 and Vela-5A and -6A with the source region independently found with the Ariel-5 X-ray detector. This area contains neither any steady X-ray source as scanned by HEAO-A nor any previously catalogued X-ray, radio or infrared sources, X-ray transients, quasars, seyferts, globular clusters, flare stars, pulsars, white dwarfs or high energy gamma-ray sources. The region is however, within the source field of a gamma-ray transient observed in 1974, which exhibited nuclear gamma-ray line structure
A giant, periodic flare from the soft gamma repeater SGR1900+14
Soft gamma repeaters are high-energy transient sources associated with
neutron stars in young supernova remnants. They emit sporadic, short (~ 0.1 s)
bursts with soft energy spectra during periods of intense activity. The event
of March 5, 1979 was the most intense and the only clearly periodic one to
date. Here we report on an even more intense burst on August 27, 1998, from a
different soft gamma repeater, which displayed a hard energy spectrum at its
peak, and was followed by a ~300 s long tail with a soft energy spectrum and a
dramatic 5.16 s period. Its peak and time integrated energy fluxes at Earth are
the largest yet observed from any cosmic source. This event was probably
initiated by a massive disruption of the neutron star crust, followed by an
outflow of energetic particles rotating with the period of the star. Comparison
of these two bursts supports the idea that magnetic energy plays an important
role, and that such giant flares, while rare, are not unique, and may occur at
any time in the neutron star's activity cycle.Comment: Accepted for publication in Natur
No Evidence for Gamma-Ray Burst/Abell Cluster or Gamma- Ray Burst/Radio-Quiet Quasar Correlations
We examine the recent claims that cosmic gamma-ray bursts are associated with
either radio-quiet quasars or Abell clusters. These associations were based on
positional coincidences between cataloged quasars or Abell clusters, and
selected events from the BATSE 3B catalog of gamma-ray bursts. We use a larger
sample of gamma-ray bursts with more accurate positions, obtained by the 3rd
Interplanetary Network, to re-evaluate these possible associations. We find no
evidence for either.Comment: Accepted for publication in the Astrophysical Journa
Cosmology of codimension-two braneworlds
We present a comprehensive study of the cosmological solutions of 6D
braneworld models with azimuthal symmetry in the extra dimensions, moduli
stabilization by flux or a bulk scalar field, and which contain at least one
3-brane that could be identified with our world. We emphasize an unusual
property of these models: their expansion rate depends on the 3-brane tension
either not at all, or in a nonstandard way, at odds with the naive expected
dimensional reduction of these systems to 4D general relativity at low
energies. Unlike other braneworld attempts to find a self-tuning solution to
the cosmological constant problem, the apparent failure of decoupling in these
models is not associated with the presence of unstabilized moduli; rather it is
due to automatic cancellation of the brane tension by the curvature induced by
the brane. This provides some corroboration for the hope that these models
provide a distinctive step toward understanding the smallness of the observed
cosmological constant. However, we point out some challenges for obtaining
realistic cosmology within this framework.Comment: 30 pages, 4 figures; generalized result for nonconventional Friedmann
equation, added referenc
- …