5,528 research outputs found

    Goplana Dioscoreae-Alatae Nom. Nov and Other Uredinales On Dioscoreaceae: Nomenclature and Taxonomy

    Get PDF
    Among the sixteen species of rust fungi described on Dioscoreaceae, three require replacement names. This paper re-describes and proposes Goplana dioscoreae-alatae as a replacement name for Goplana dioscoreae Cummins, nom. illegit. We also propose Uredo dioscoreae-doryphorae as a replacement name for Uredo spinulosa Y. Ono, nom. illegit.; and Aecidium tumbayensis as a replacement name for Aecidium dioscoreae J.C. Lindq., nom. illegit. We discuss nomenclatural controversies surrounding these taxa

    On the origin of the March 5, 1979 gamma ray transient: A vibrating neutron star in the Large Magellanic Cloud

    Get PDF
    It is proposed that a vibrating neutron star in the Large Magellanic Cloud is the source of the March 5 transient. Neutron star vibrations transport energy rapidly to the surface, heat the atmosphere by wave dissipation, and decay by gravitational radiation reaction. The electromagnetic emission arises from e(+)-e(-) pairs which cool and annihilate in the strong magnetic field of the neutron star. The field also confines the pairs, and this allows the production of the redshifted annihilation feature observed in the data. The redshift implies a gravitational radiation damping time which agrees with the 0.15 second duration of the impulsive phase of the event. Thus, the March 5 transient may be both the first detection of a vibrating neutron star and indirect evidence for gravitational radiation

    Gamma ray spectroscopy in astrophysics

    Get PDF
    Experimental and theoretical aspects of gamma ray spectroscopy in high energy astrophysics are discussed. Line spectra from solar, stellar, planetary, and cosmic gamma rays are examined as well as HEAO investigations, the prospects of a gamma ray observatory, and follow-on X-ray experiments in space

    Shock Deformation in Zircon, a Comparison of Results from Shock-Reverberation and Single-Shock Experiments

    Get PDF
    The utility of the mineral zircon, ZrSiO4, as a shock-metamorphic geobarometer and geochronometer, has been steadily growing within the planetary science community. Zircon is an accessory phase found in many terrestrial rock types, lunar samples, lunar meteorites, martian meteorites and various other achondrites. Because zircon is refractory and has a high closure temperature for Pb diffusion, it has been used to determine the ages of some of the oldest material on Earth and elsewhere in the Solar System. Furthermore, major (O) and trace-element (REE, Ti, Hf) abundances and isotope compositions of zircon help characterize the petrogenetic environments and sources from which they crystallized. The response of zircon to impact-induced shock deformation is predominantly crystallographic, including dislocation creep and the formation of planar and sub-planar, low-angle grain boundaries; the formation of mechanical {112} twins; transformation to the high pressure polymorph reidite; the development of polycrystalline microtextures; and dissociation to the oxide constituents SiO2 and ZrO2. Shock microstructures can also variably affect the U- Pb isotope systematics of zircon and, in some instances, be used to constrain the impact age. While numerous studies have characterized shock deformation in zircon recovered from a variety of terrestrial impact craters and ejecta deposits and Apollo samples, experimental studies of shock deformation in zircon are limited to a handful of examples in the literature. In addition, the formation conditions (e.g., P, T) of various shock microstructures, such as planar-deformation bands, twins, and reidite lamellae, remain poorly con-strained. Furthermore, previous shocked-zircon experimental charges have not been analyzed using modern analytical equipment. This study will therefore under-take an new set of zircon shock experiments, which will then be microstructurally characterized using state-of-the-art instrumentation within the Astromaterials Research and Exploration Science Division (ARES), NASA Johnson Space Center

    Where is SGR1806-20?

    Get PDF
    We apply a statistical method to derive very precise locations for soft gamma repeaters using data from the interplanetary network. We demonstrate the validity of the method by deriving a 600 arcsec^2 error ellipse for SGR1900+14 whose center agrees well with the VLA source position. We then apply it to SGR1806-20, for which we obtain a 230 arcsec^2 error ellipse, the smallest burst error box to date. We find that the most likely position of the source has a small but significant displacement from that of the non-thermal core of the radio supernova remnant G10.0-0.3, which was previously thought to be the position of the repeater. We propose a different model to explain the changing supernova remnant morphology and the positions of the luminous blue variable and the bursting source.Comment: 12 pages and 2 color figures, accepted for publication in Astrophysical Journal Letter

    Helios-2 Vela-Ariel-5 gamma-ray burst source position

    Get PDF
    The gamma-ray burst of 28 January 1976, one of 18 events thus far detected in interplanetary space with Helios-2, was also observed with the Vela-5A, -6A and the Ariel-5 satellites. A small source field is obtained from the intersection of the region derived from the observed time delays between Helios-2 and Vela-5A and -6A with the source region independently found with the Ariel-5 X-ray detector. This area contains neither any steady X-ray source as scanned by HEAO-A nor any previously catalogued X-ray, radio or infrared sources, X-ray transients, quasars, seyferts, globular clusters, flare stars, pulsars, white dwarfs or high energy gamma-ray sources. The region is however, within the source field of a gamma-ray transient observed in 1974, which exhibited nuclear gamma-ray line structure

    A giant, periodic flare from the soft gamma repeater SGR1900+14

    Get PDF
    Soft gamma repeaters are high-energy transient sources associated with neutron stars in young supernova remnants. They emit sporadic, short (~ 0.1 s) bursts with soft energy spectra during periods of intense activity. The event of March 5, 1979 was the most intense and the only clearly periodic one to date. Here we report on an even more intense burst on August 27, 1998, from a different soft gamma repeater, which displayed a hard energy spectrum at its peak, and was followed by a ~300 s long tail with a soft energy spectrum and a dramatic 5.16 s period. Its peak and time integrated energy fluxes at Earth are the largest yet observed from any cosmic source. This event was probably initiated by a massive disruption of the neutron star crust, followed by an outflow of energetic particles rotating with the period of the star. Comparison of these two bursts supports the idea that magnetic energy plays an important role, and that such giant flares, while rare, are not unique, and may occur at any time in the neutron star's activity cycle.Comment: Accepted for publication in Natur

    No Evidence for Gamma-Ray Burst/Abell Cluster or Gamma- Ray Burst/Radio-Quiet Quasar Correlations

    Get PDF
    We examine the recent claims that cosmic gamma-ray bursts are associated with either radio-quiet quasars or Abell clusters. These associations were based on positional coincidences between cataloged quasars or Abell clusters, and selected events from the BATSE 3B catalog of gamma-ray bursts. We use a larger sample of gamma-ray bursts with more accurate positions, obtained by the 3rd Interplanetary Network, to re-evaluate these possible associations. We find no evidence for either.Comment: Accepted for publication in the Astrophysical Journa

    Cosmology of codimension-two braneworlds

    Full text link
    We present a comprehensive study of the cosmological solutions of 6D braneworld models with azimuthal symmetry in the extra dimensions, moduli stabilization by flux or a bulk scalar field, and which contain at least one 3-brane that could be identified with our world. We emphasize an unusual property of these models: their expansion rate depends on the 3-brane tension either not at all, or in a nonstandard way, at odds with the naive expected dimensional reduction of these systems to 4D general relativity at low energies. Unlike other braneworld attempts to find a self-tuning solution to the cosmological constant problem, the apparent failure of decoupling in these models is not associated with the presence of unstabilized moduli; rather it is due to automatic cancellation of the brane tension by the curvature induced by the brane. This provides some corroboration for the hope that these models provide a distinctive step toward understanding the smallness of the observed cosmological constant. However, we point out some challenges for obtaining realistic cosmology within this framework.Comment: 30 pages, 4 figures; generalized result for nonconventional Friedmann equation, added referenc
    corecore