13 research outputs found

    Moisture effects on carbon and nitrogen emission from burning of wildland biomass

    Get PDF
    Carbon (C) and nitrogen (N) released from biomass burning have multiple effects on the Earth's biogeochemical cycle, climate change, and ecosystem. These effects depend on the relative abundances of C and N species emitted, which vary with fuel type and combustion conditions. This study systematically investigates the emission characteristics of biomass burning under different fuel moisture contents, through controlled burning experiments with biomass and soil samples collected from a typical alpine forest in North America. Fuel moisture in general lowers combustion efficiency, shortens flaming phase, and introduces prolonged smoldering before ignition. It increases emission factors of incompletely oxidized C and N species, such as carbon monoxide (CO) and ammonia (NH<sub>3</sub>). Substantial particulate carbon and nitrogen (up to 4 times C in CO and 75% of N in NH<sub>3</sub>) were also generated from high-moisture fuels, maily associated with the pre-flame smoldering. This smoldering process emits particles that are larger and contain lower elemental carbon fractions than soot agglomerates commonly observed in flaming smoke. Hydrogen (H)/C ratio and optical properties of particulate matter from the high-moisture fuels show their resemblance to plant cellulous and brown carbon, respectively. These findings have implications for modeling biomass burning emissions and impacts

    Stormwater and fire as sources of black carbon nanoparticles to Lake Tahoe

    No full text
    Emitted to the atmosphere through fire and fossil fuel combustion, refractory black carbon nanoparticles (rBC) impact human health, climate, and the carbon cycle. Eventually these particles enter aquatic environments, where they may affect the fate of other pollutants. While ubiquitous, the particles are still poorly characterized in freshwater systems. Here we present the results of a study determining rBC in waters of the Lake Tahoe watershed in the western United States from 2007 to 2009. The study period spanned a large fire within the Tahoe basin, seasonal snowmelt, and a number of storm events, which resulted in pulses of urban runo# into the lake with rBCconcentrations up to 4 orders of magnitude higher than midlake concentrations. The results show that rBC pulses from both the fire and urban runoff were rapidly attenuated suggesting unexpectedaggregation or degradation of the particles. We find that those processes prevent rBC concentrations from building up in the clear and oligotrophic Lake Tahoe. This rapid removal of rBC soon after entry into the lake has implications for the transport of rBC in the global aquatic environment and the flux of rBC from continents to the global ocean
    corecore