1,685 research outputs found
A quantum Peierls-Nabarro barrier
Kink dynamics in spatially discrete nonlinear Klein-Gordon systems is
considered. For special choices of the substrate potential, such systems
support continuous translation orbits of static kinks with no (classical)
Peierls-Nabarro barrier. It is shown that these kinks experience, nevertheless,
a lattice-periodic confining potential, due to purely quantum effects anaolgous
to the Casimir effect of quantum field theory. The resulting ``quantum
Peierls-Nabarro potential'' may be calculated in the weak coupling
approximation by a simple and computationally cheap numerical algorithm, which
is applied, for purposes of illustration, to a certain two-parameter family of
substrates.Comment: 13 pages LaTeX, 7 figure
The kink Casimir energy in a lattice sine-Gordon model
The Casimir energy of quantum fluctuations about the classical kink
configuration is computed numerically for a recently proposed lattice
sine-Gordon model. This energy depends periodically on the kink position and is
found to be approximately sinusoidal.Comment: 10 pages, 4 postscript figure
Kinks in dipole chains
It is shown that the topological discrete sine-Gordon system introduced by
Speight and Ward models the dynamics of an infinite uniform chain of electric
dipoles constrained to rotate in a plane containing the chain. Such a chain
admits a novel type of static kink solution which may occupy any position
relative to the spatial lattice and experiences no Peierls-Nabarro barrier.
Consequently the dynamics of a single kink is highly continuum like, despite
the strongly discrete nature of the model. Static multikinks and kink-antikink
pairs are constructed, and it is shown that all such static solutions are
unstable. Exact propagating kinks are sought numerically using the
pseudo-spectral method, but it is found that none exist, except, perhaps, at
very low speed.Comment: Published version. 21 pages, 5 figures. Section 3 completely
re-written. Conclusions unchange
Solar array conceptual design for the Halley's Comet ion drive mission, phase 2
Conceptual design studies were performed directed toward a high power, ultralightweight solar array, compatible with the requirements for the Halley's Comet Ion Drive Mission. A planar, rollup array design concept capable of producing 120 kW at 1 AU and 6 kW at 4.5 AU, and a concentrator, rollup array design concept capable of producing 60 kW at 1 AU and 15.5 kW at 4.5 AU evolved. Both arrays make maximum use of thin film, lightweight technology. The Halley's Comet spacecraft and mission requirements developed from preliminary definition to a more finalized and mature design. As solar array requirements were updated, conceptual design iterations were necessary to keep pace with the rapidly changing program objectives and goals. The Halley's Comet Mission program status and design approaches were reviewed and more realistic power requirements at 4.5 AU for the ion engines were established at the 12 to 16 kW range. This higher power necessitated a change from the planar array design to a concentrator array design in order to remain within suitable cost and weight objectives
Magnetic bubble refraction and quasibreathers in inhomogeneous antiferromagnets
The dynamics of magnetic bubble solitons in a two-dimensional isotropic
antiferromagnetic spin lattice is studied, in the case where the exchange
integral J(x,y) is position dependent. In the near continuum regime, this
system is described by the relativistic O(3) sigma model on a spacetime with a
spatially inhomogeneous metric, determined by J. The geodesic approximation is
used to describe low energy soliton dynamics in this system: n-soliton motion
is approximated by geodesic motion in the moduli space of static n-solitons,
equipped with the L^2 metric. Explicit formulae for this metric for various
natural choices of J(x,y) are obtained. From these it is shown that single
soliton trajectories experience refraction, with 1/J analogous to the
refractive index, and that this refraction effect allows the construction of
simple bubble lenses and bubble guides. The case where J has a disk
inhomogeneity (taking the value J_1 outside a disk, and J_2<J_1 inside) is
considered in detail. It is argued that, for sufficiently large J_1/J_2 this
type of antiferromagnet supports approximate quasibreathers: two or more
coincident bubbles confined within the disk which spin internally while their
shape undergoes periodic oscillations with a generically incommensurate period.Comment: Conference proceedings paper for talk given at Nonlinear Physics
Theory and Experiment IV, Gallipoli, Italy, June 200
Kink Dynamics in a Topological Phi^4 Lattice
It was recently proposed a novel discretization for nonlinear Klein-Gordon
field theories in which the resulting lattice preserves the topological
(Bogomol'nyi) lower bound on the kink energy and, as a consequence, has no
Peierls-Nabarro barrier even for large spatial discretizations (h~1.0). It was
then suggested that these ``topological discrete systems'' are a natural choice
for the numerical study of continuum kink dynamics. Giving particular emphasis
to the phi^4 theory, we numerically investigate kink-antikink scattering and
breather formation in these topological lattices. Our results indicate that,
even though these systems are quite accurate for studying free kinks in coarse
lattices, for legitimate dynamical kink problems the accuracy is rather
restricted to fine lattices (h~0.1). We suggest that this fact is related to
the breaking of the Bogomol'nyi bound during the kink-antikink interaction,
where the field profile loses its static property as required by the
Bogomol'nyi argument. We conclude, therefore, that these lattices are not
suitable for the study of more general kink dynamics, since a standard
discretization is simpler and has effectively the same accuracy for such
resolutions.Comment: RevTeX, 4 pages, 4 figures; Revised version, accepted to Physical
Review E (Brief Reports
Comparison of Fish Assemblages and Water Quality in Two Marinas in the British Virgin Islands
Eutrophication is a widespread problem in tropical marine environments that leads to the increase of nutrients in a water body, usually nitrate and phosphate, and is usually associated with the discharge of untreated sewage, intensive farming or fertilizer-enriched agricultural runoff (Wu 1999). Common symptoms are increased N and P levels, increased macroalgal production in shallow areas, reduced dissolved oxygen, loss of seagrass and coral habitats and changes in the fish community (Hallock and Schlager 1986, Granelli et al. 1990, Valiela 1995, Hemminga and Duarte 2000). Direct chemical testing to establish pollution levels can be difficult because of sharp pollution gradients, rapid dilution effects, changing tides and currents, variable pollutant concentrations, varying pollution activities, unavailability of water quality test kits, a prohibitive range of pollutants to test for and high testing costs (Resh et al. 1995). Many of these problems can be countered with bioassessment methods that use biotic indicators to assess ecosystem integrity (Karr 1981, Noss 1990, Wright et al. 1993, Chessman 1995). Biotic indicators of pollution have several advantages over chemical methods: they are broad-ranged, detect many forms of pollution, reflect pollution history and indicate overall health of the system.
Animal bioindicators should be: 1) sufficiently sensitive to disturbance, 2) widely distributed, 3) capable of living in a wide range of conditions, 4) relatively independent of sample size, 5) easy and cost effective to study, 6) able to differentiate between natural and man-made disturbance, and 7) relevant to ecologically significant phenomena (Noss 1990). Fish meet many of these criteria and have been included in several freshwater bioassessment protocols, sometimes referred to as biological integrity indices (Larkin and Northcote 1969, Karr 1981, Karr 1990, Hughes et al. 1998). Marine fish have been widely used as indicators of coral cover and overfishing (Bell and Galzin 1984, Findley and Findley 1985, Roberts 1995, Russ and Alcala 1998), but few studies have successfully used marine fish assemblages as indicators of pollution. One reason is that it is difficult to determine the direct effects of pollution on marine fish assemblages because natural experiments are usually confounded by habitat alteration due to dredging, siltation and pollution. This study aims to assess the potential of marine fishes as bioindicators using artificial reefs as habitat controls in 2 marinas with different pollution levels
Semi-Meissner state and neither type-I nor type-II superconductivity in multicomponent systems
Traditionally, superconductors are categorized as type-I or type-II. Type-I
superconductors support only Meissner and normal states, while type-II
superconductors form magnetic vortices in sufficiently strong applied magnetic
fields. Recently there has been much interest in superconducting systems with
several species of condensates, in fields ranging from Condensed Matter to High
Energy Physics. Here we show that the type-I/type-II classification is
insufficient for such multicomponent superconductors. We obtain solutions
representing thermodynamically stable vortices with properties falling outside
the usual type-I/type-II dichotomy, in that they have the following features:
(i) Pippard electrodynamics, (ii) interaction potential with long-range
attractive and short-range repulsive parts, (iii) for an n-quantum vortex, a
non-monotonic ratio E(n)/n where E(n) is the energy per unit length, (iv)
energetic preference for non-axisymmetric vortex states, "vortex molecules".
Consequently, these superconductors exhibit an emerging first order transition
into a "semi-Meissner" state, an inhomogeneous state comprising a mixture of
domains of two-component Meissner state and vortex clusters.Comment: in print in Phys. Rev. B Rapid Communications. v2: presentation is
made more accessible for a general reader. Latest updates and links to
related papers are available at the home page of one of the authors:
http://people.ccmr.cornell.edu/~egor
Kink dynamics in a novel discrete sine-Gordon system
A spatially-discrete sine-Gordon system with some novel features is
described. There is a topological or Bogomol'nyi lower bound on the energy of a
kink, and an explicit static kink which saturates this bound. There is no
Peierls potential barrier, and consequently the motion of a kink is simpler,
especially at low speeds. At higher speeds, it radiates and slows down.Comment: 10 pages, 7 figures, archivin
Come to the dark side! The role of functional traits in shaping dark diversity patterns of south-eastern European hoverflies
1. Dark diversity represents the set of species that can potentially inhabit a given area under particular ecological conditions, but are currently 'missing' from a site. This concept allows characterisation of the mechanisms determining why species are sometimes absent from an area that seems ecologically suitable for them. 2. The aim of this study was to determine the dark diversity of hoverflies in south-eastern Europe and to discuss the role of different functional traits that might increase the likelihood of species contributing to dark diversity. Based on expert opinion, the Syrph the Net database and known occurrences of species, the study estimated species pools, and observed and dark diversities within each of 11 defined vegetation types for 564 hoverfly species registered in south-eastern Europe. To detect the most important functional traits contributing to species being in dark diversity across different vegetation types, a random forest algorithm and respective statistics for variable importance were used. 3. The highest dark diversity was found for southwest Balkan sub-Mediterranean mixed oak forest type, whereas the lowest was in Mediterranean mixed forest type. Three larval feeding modes (saproxylic, and phytophagous on bulbs or roots) were found to be most important for determining the probability of a species contributing to hoverfly dark diversity, based on univariate correlations and random forest analysis. 4. This study shows that studying dark diversity might provide important insights into what drives community assembly in south-eastern European hoverflies, especially its missing components, and contributes to more precise conservation prioritisation of both hoverfly species and their habitats.Peer reviewe
- …