4,931 research outputs found
Controlled Ecological Life Support Systems (CELSS) physiochemical waste management systems evaluation
Parametric data for six waste management subsystems considered for use on the Space Station are compared, i.e.: (1) dry incineration; (2) wet oxidation; (3) supercritical water oxidation; (4) vapor compression distillation; (5) thermoelectric integrated membrane evaporation system; and (6) vapor phase catalytic ammonia removal. The parameters selected for comparison are on-orbit weight and volume, resupply and return to Earth logistics, power consumption, and heat rejection. Trades studies are performed on subsystem parameters derived from the most recent literature. The Boeing Engineering Trade Study (BETS), an environmental control and life support system (ECLSS) trade study computer program developed by Boeing Aerospace Company, is used to properly size the subsystems under study. The six waste treatment subsystems modeled in this program are sized to process the wastes for a 90-day Space Station mission with an 8-person crew, and an emergency supply period of 28 days. The resulting subsystem parameters are compared not only on an individual subsystem level but also as part of an integrated ECLSS
THz-Frequency Spin-Hall Auto-Oscillator Based on a Canted Antiferromagnet
We propose a design of a THz-frequency signal generator based on a layered
structure consisting of a current-driven platinum (Pt) layer and a layer of an
antiferromagnet (AFM) with easy-plane anisotropy, where the magnetization
vectors of the AFM sublattices are canted inside the easy plane by the
Dzyaloshinskii-Moriya interaction (DMI). The DC electric current flowing in the
Pt layer creates, due to the spin-Hall effect, a perpendicular spin current
that, being injected in the AFM layer, tilts the DMI-canted AFM sublattices out
of the easy plane, thus exposing them to the action of a strong internal
exchange magnetic field of the AFM. The sublattice magnetizations, along with
the small net magnetization vector of the canted AFM,
start to rotate about the hard anisotropy axis of the AFM with the THz
frequency proportional to the injected spin current and the AFM exchange field.
The rotation of the small net magnetization results in
the THz-frequency dipolar radiation that can be directly received by an
adjacent (e.g. dielectric) resonator. We demonstrate theoretically that the
radiation frequencies in the range ~THz are possible at the
experimentally reachable magnitudes of the driving current density, and
evaluate the power of the signal radiated into different types of resonators,
showing that this power increases with the increase of frequency , and that
it could exceed 1~W at ~THz for a typical dielectric resonator
of the electric permittivity and quality factor
Solar wind-magnetosphere coupling and the distant magnetotail: ISEE-3 observations
ISEE-3 Geotail observations are used to investigate the relationship between the interplanetary magnetic field, substorm activity, and the distant magnetotail. Magnetic field and plasma observations are used to present evidence for the existence of a quasi-permanent, curved reconnection neutral line in the distant tail. The distance to the neutral line varies from absolute value of X = 120 to 140 R/sub e near the center of the tail to beyond absolute value of X = 200 R/sub e at the flanks. Downstream of the neutral line the plasma sheet magnetic field is shown to be negative and directly proportional to negative B/sub z in the solar wind as observed by IMP-8. V/sub x in the distant plasma sheet is also found to be proportional to IMF B/sub z with southward IMF producing the highest anti-solar flow velocities. A global dayside reconnection efficiency of 20 +- 5% is derived from the ISEE-3/IMP-8 magnetic field comparisons. Substorm activity, as measured by the AL index, produces enhanced negative B/sub z and tailward V/sub x in the distant plasma sheet in agreement with the basic predictions of the reconnection-based models of substorms. The rate of magnetic flux transfer out of the tail as a function of AL is found to be consistent with previous near-Earth studies. Similarly, the mass and energy fluxes carried by plasma sheet flow down the tail are consistent with theoretical mass and energy budgets for an open magnetosphere. In summary, the ISEE-3 Geotail observations appear to provide good support for reconnection models of solar wind-magnetosphere coupling and substorm energy rates
Stochastic theory of spin-transfer oscillator linewidths
We present a stochastic theory of linewidths for magnetization oscillations
in spin-valve structures driven by spin-polarized currents. Starting from a
nonlinear oscillator model derived from spin-wave theory, we derive Langevin
equations for amplitude and phase fluctuations due to the presence of thermal
noise. We find that the spectral linewidths are inversely proportional to the
spin-wave intensities with a lower bound that is determined purely by
modulations in the oscillation frequencies. Reasonable quantitative agreement
with recent experimental results from spin-valve nanopillars is demonstrated.Comment: Submitted to Physical Review
Exclusion of Tiny Interstellar Dust Grains from the Heliosphere
The distribution of interstellar dust grains (ISDG) observed in the Solar
System depends on the nature of the interstellar medium-solar wind interaction.
The charge of the grains couples them to the interstellar magnetic field (ISMF)
resulting in some fraction of grains being excluded from the heliosphere while
grains on the larger end of the size distribution, with gyroradii comparable to
the size of the heliosphere, penetrate the termination shock. This results in a
skewing the size distribution detected in the Solar System.
We present new calculations of grain trajectories and the resultant grain
density distribution for small ISDGs propagating through the heliosphere. We
make use of detailed heliosphere model results, using three-dimensional (3-D)
magnetohydrodynamic/kinetic models designed to match data on the shape of the
termination shock and the relative deflection of interstellar neutral H and He
flowing into the heliosphere. We find that the necessary inclination of the
ISMF relative to the inflow direction results in an asymmetry in the
distribution of the larger grains (0.1 micron) that penetrate the heliopause.
Smaller grains (0.01 micron) are completely excluded from the Solar System at
the heliopause.Comment: 5 pages, 5 figures, accepted for publication in the Solar Wind 12
conference proceeding
Photoionization of Galactic Halo Gas by Old Supernova Remnants
We present new calculations on the contribution from cooling hot gas to the
photoionization of warm ionized gas in the Galaxy. We show that hot gas in
cooling supernova remnants (SNRs) is an important source of photoionization,
particularly for gas in the halo. We find that in many regions at high latitude
this source is adequate to account for the observed ionization so there is no
need to find ways to transport stellar photons from the disk. The flux from
cooling SNRs sets a floor on the ionization along any line of sight. Our model
flux is also shown to be consistent with the diffuse soft X-ray background and
with soft X-ray observations of external galaxies.
We consider the ionization of the clouds observed towards the halo star HD
93521, for which there are no O stars close to the line of sight. We show that
the observed ionization can be explained successfully by our model EUV/soft
X-ray flux from cooling hot gas. In particular, we can match the H alpha
intensity, the S++/S+ ratio, and the C+* column. From observations of the
ratios of columns of C+* and either S+ or H0, we are able to estimate the
thermal pressure in the clouds. The slow clouds require high (~10^4 cm^-3 K)
thermal pressures to match the N(C+*)/N(S+) ratio. Additional heating sources
are required for the slow clouds to maintain their ~7000 K temperatures at
these pressures, as found by Reynolds, Hausen & Tufte (1999).Comment: AASTeX 5.01; 34 pages, 2 figures; submitted to Astrophysical Journa
Possible Detection of OVI from the LMC Superbubble N70
We present FUSE observations toward four stars in the LMC superbubble N70 and
compare these spectra to those of four comparison targets located in nearby
field and diffuse regions. The N70 sight lines show OVI 1032 absorption that is
consistently stronger than the comparison sight lines by ~60%. We attribute the
excess column density (logN_OVI=14.03 cm^-2) to hot gas within N70, potentially
the first detection of OVI associated with a superbubble. In a survey of 12 LMC
sight lines, Howk et al. (2002a) concluded that there was no correlation
between ISM morphology and N_OVI. We present a reanalysis of their measurements
combined with our own and find a clear difference between the superbubble and
field samples. The five superbubbles probed to date with FUSE show a
consistently higher mean N_OVI than the 12 non-superbubble sight lines, though
both samples show equivalent scatter from halo variability. Possible ionization
mechanisms for N70 are discussed, and we conclude that the observed OVI could
be the product of thermal conduction at the interface between the hot, X-ray
emitting gas inside the superbubble and the cooler, photoionized material
making up the shell seen prominently in Halpha. We calculate the total hydrogen
density n_H implied by our OVI measurements and find a value consistent with
expectations. Finally, we discuss emission-line observations of OVI from N70.Comment: 9 pages in emulateapj style. Accepted to Ap
RS Ophiuchi: Thermonuclear Explosion or Disc Instability?
Sokoloski et al (2008) have recently reported evidence that the recurrent
nova RS Ophiuchi produced a pair of highly collimated radio jets within days of
its 2006 outburst. This suggests that an accretion disc must be present during
the outburst. However in the standard picture of recurrent novae as
thermonuclear events, any such disc must be expelled from the white dwarf
vicinity, as the nuclear energy yield greatly exceeds its binding energy. We
suggest instead that the outbursts of RS Oph are thermal--viscous instabilities
in a disc irradiated by the central accreting white dwarf. The distinctive
feature of RS Oph is the very large size of its accretion disc. Given this, it
fits naturally into a consistent picture of systems with unstable accretion
discs. This picture explains the presence and speed of the jets, the brightness
and duration of the outburst, and its rise time and linear decay, as well as
the faintness of the quiescence. By contrast, the hitherto standard picture of
recurrent thermonuclear explosions has a number of severe difficulties. These
include the presence of jets, the faintness of quiescence, and the fact the the
accretion disc must be unstable unless it is far smaller than any reasonable
estimate.Comment: MNRAS, in pres
X-Atlas: An Online Archive of Chandra's Stellar High Energy Transmission Gratings Observations
The high-resolution X-ray spectroscopy made possible by the 1999 deployment
of the Chandra X-ray Observatory has revolutionized our understanding of
stellar X-ray emission. Many puzzles remain, though, particularly regarding the
mechanisms of X-ray emission from OB stars. Although numerous individual stars
have been observed in high-resolution, realizing the full scientific potential
of these observations will necessitate studying the high-resolution Chandra
dataset as a whole. To facilitate the rapid comparison and characterization of
stellar spectra, we have compiled a uniformly processed database of all stars
observed with the Chandra High Energy Transmission Grating (HETG). This
database, known as X-Atlas, is accessible through a web interface with
searching, data retrieval, and interactive plotting capabilities. For each
target, X-Atlas also features predictions of the low-resolution ACIS spectra
convolved from the HETG data for comparison with stellar sources in archival
ACIS images. Preliminary analyses of the hardness ratios, quantiles, and
spectral fits derived from the predicted ACIS spectra reveal systematic
differences between the high-mass and low-mass stars in the atlas and offer
evidence for at least two distinct classes of high-mass stars. A high degree of
X-ray variability is also seen in both high and low-mass stars, including
Capella, long thought to exhibit minimal variability. X-Atlas contains over 130
observations of approximately 25 high-mass stars and 40 low-mass stars and will
be updated as additional stellar HETG observations become public. The atlas has
recently expanded to non-stellar point sources, and Low Energy Transmission
Grating (LETG) observations are currently being added as well
- …
