117 research outputs found

    Scalar and vector modulation instabilities induced by vacuum fluctuations in fibers: numerical study

    Full text link
    We study scalar and vector modulation instabilities induced by the vacuum fluctuations in birefringent optical fibers. To this end, stochastic coupled nonlinear Schrodinger equations are derived. The stochastic model is equivalent to the quantum field operators equations and allow for dispersion, nonlinearity, and arbitrary level of birefringence. Numerical integration of the stochastic equations is compared to analytical formulas in the case of scalar modulation instability and non depleted pump approximation. The effect of classical noise and its competition with vacuum fluctuations for inducing modulation instability is also addressed.Comment: 33 pages, 5 figure

    Point defect dynamics in bcc metals

    Full text link
    We present an analysis of the time evolution of self-interstitial atom and vacancy (point defect) populations in pure bcc metals under constant irradiation flux conditions. Mean-field rate equations are developed in parallel to a kinetic Monte Carlo (kMC) model. When only considering the elementary processes of defect production, defect migration, recombination and absorption at sinks, the kMC model and rate equations are shown to be equivalent and the time evolution of the point defect populations is analyzed using simple scaling arguments. We show that the typically large mismatch of the rates of interstitial and vacancy migration in bcc metals can lead to a vacancy population that grows as the square root of time. The vacancy cluster size distribution under both irreversible and reversible attachment can be described by a simple exponential function. We also consider the effect of highly mobile interstitial clusters and apply the model with parameters appropriate for vanadium and α−\alpha-iron.Comment: to appear in Phys. Rev.

    Many-body quantum dynamics of polarisation squeezing in optical fibre

    Get PDF
    We report new experiments that test quantum dynamical predictions of polarization squeezing for ultrashort photonic pulses in a birefringent fibre, including all relevant dissipative effects. This exponentially complex many-body problem is solved by means of a stochastic phase-space method. The squeezing is calculated and compared to experimental data, resulting in excellent quantitative agreement. From the simulations, we identify the physical limits to quantum noise reduction in optical fibres. The research represents a significant experimental test of first-principles time-domain quantum dynamics in a one-dimensional interacting Bose gas coupled to dissipative reservoirs.Comment: 4 pages, 4 figure

    All-fibre source of amplitude-squeezed light pulses

    Full text link
    An all-fibre source of amplitude squeezed solitons utilizing the self-phase modulation in an asymmetric Sagnac interferometer is experimentally demonstrated. The asymmetry of the interferometer is passively controlled by an integrated fibre coupler, allowing for the optimisation of the noise reduction. We have carefully studied the dependence of the amplitude noise on the asymmetry and the power launched into the Sagnac interferometer. Qualitatively, we find good agreement between the experimental results, a semi-classical theory and earlier numerical calculations [Schmitt etl.al., PRL Vol. 81, p.2446, (1998)]. The stability and flexibility of this all-fibre source makes it particularly well suited to applications in quantum information science

    Interband mixing between two-dimensional states localized in a surface quantum well and heavy hole states of the valence band in narrow gap semiconductor

    Full text link
    Theoretical calculations in the framework of Kane model have been carried out in order to elucidate the role of interband mixing in forming the energy spectrum of two-dimensional carriers, localized in a surface quantum well in narrow gap semiconductor. Of interest was the mixing between the 2D states and heavy hole states in the volume of semiconductor. It has been shown that the interband mixing results in two effects: the broadening of 2D energy levels and their shift, which are mostly pronounced for semiconductors with high doping level. The interband mixing has been found to influence mostly the effective mass of 2D carriers for large their concentration, whereas it slightly changes the subband distribution in a wide concentration range.Comment: 12 pages (RevTEX) and 4 PostScript-figure

    High-precision wavelength calibration of astronomical spectrographs with laser frequency combs

    Full text link
    We describe a possible new technique for precise wavelength calibration of high-resolution astronomical spectrographs using femtosecond-pulsed mode-locked lasers controlled by stable oscillators such as atomic clocks. Such `frequency combs' provide a series of narrow modes which are uniformly spaced according to the laser's pulse repetition rate and whose absolute frequencies are known a priori with relative precision better than 10^{-12}. Simulations of frequency comb spectra show that the photon-limited wavelength calibration precision achievable with existing echelle spectrographs should be ~1 cm/s when integrated over a 4000A range. Moreover, comb spectra may be used to accurately characterise distortions of the wavelength scale introduced by the spectrograph and detector system. The simulations show that frequency combs with pulse repetition rates of 5-30GHz are required, given the typical resolving power of existing and possible future echelle spectrographs. Achieving such high repetition rates, together with the desire to produce all comb modes with uniform intensity over the entire optical range, represent the only significant challenges in the design of a practical system. Frequency comb systems may remove wavelength calibration uncertainties from all practical spectroscopic experiments, even those combining data from different telescopes over many decades.Comment: 10 pages, 6 figures, 1 table. Accepted by MNRAS. v2: Fig. 3 augmented and minor changes to text (including extended title

    Nonclassical correlations in damped quantum solitons

    Get PDF
    Using cumulant expansion in Gaussian approximation, the internal quantum statistics of damped soliton-like pulses in Kerr media are studied numerically, considering both narrow and finite bandwidth spectral pulse components. It is shown that the sub-Poissonian statistics can be enhanced, under certain circumstances, by absorption, which damps out some destructive interferences. Further, it is shown that both the photon-number correlation and the correlation of the photon-number variance between different pulse components can be highly nonclassical even for an absorbing fiber. Optimum frequency windows are determined in order to realize strong nonclassical behavior, which offers novel possibilities of using solitons in optical fibers as a source of nonclassically correlated light beams.Comment: 15 pages, 11 PS figures (color

    Tunnelling Studies of Two-Dimensional States in Semiconductors with Inverted Band Structure: Spin-orbit Splitting, Resonant Broadening

    Full text link
    The results of tunnelling studies of the energy spectrum of two-dimensional (2D) states in a surface quantum well in a semiconductor with inverted band structure are presented. The energy dependence of quasimomentum of the 2D states over a wide energy range is obtained from the analysis of tunnelling conductivity oscillations in a quantizing magnetic field. The spin-orbit splitting of the energy spectrum of 2D states, due to inversion asymmetry of the surface quantum well, and the broadening of 2D states at the energies, when they are in resonance with the heavy hole valence band, are investigated in structures with different strength of the surface quantum well. A quantitative analysis is carried out within the framework of the Kane model of the energy spectrum. The theoretical results are in good agreement with the tunnelling spectroscopy data.Comment: 29 pages, RevTeX, submitted in Phys.Rev.B. Figures available on request from [email protected]
    • 

    corecore