435 research outputs found
Laser Doppler instrument measures fluid velocity without reference beam
Fluid velocity is measured by focusing laser beam on moving fluid and measuring Doppler shift in frequency which results when radiation is scattered by particles either originally present or deliberately injected into moving fluid
Investigation of air-flow velocity by laser backscatter
Laser light backscatter investigation of air flow velocity in contaminated atmospheres for application to clear air turbulence detector
Normal Modes and No Zero Mode Theorem of Scalar Fields in BTZ Black Hole Spacetime
Eigenfunctions for normal modes of scalar fields in BTZ black hole spacetime
are studied. Orthonormal relations among them are derived. Quantization for
scalar fields is done and particle number, energy and angular momentum are
expressed by the creation and annihilation operators. Allowed physical normal
mode region is studied on the basis of the no zero mode theorem. Its
implication to the statistical mechanics is also studied.Comment: 11 pages,v2 typos correcte
Scalar Field Contribution to Rotating Black Hole Entropy
Scalar field contribution to entropy is studied in arbitrary D dimensional
one parameter rotating spacetime by semiclassical method. By introducing the
zenithal angle dependent cutoff parameter, the generalized area law is derived.
The non-rotating limit can be taken smoothly and it yields known results. The
derived area law is then applied to the Banados-Teitelboim-Zanelli (BTZ) black
hole in (2+1) dimension and the Kerr-Newman black hole in (3+1) dimension. The
generalized area law is reconfirmed by the Euclidean path integral method for
the quantized scalar field. The scalar field mass contribution is discussed
briefly.Comment: 26 page
Photoemission study of TiO2/VO2 interfaces
We have measured photoemission spectra of two kinds of TiO-capped VO
thin films, namely, that with rutile-type TiO (r-TiO/VO) and that
with amorphous TiO (a-TiO/VO) capping layers. Below the
Metal-insulator transition temperature of the VO thin films, K,
metallic states were not observed for the interfaces with TiO, in contrast
with the interfaces between the band insulator SrTiO and the Mott insulator
LaTiO in spite of the fact that both TiO and SrTiO are band
insulators with electronic configurations and both VO and LaTiO
are Mott insulators with electronic configurations. We discuss possible
origins of this difference and suggest the importance of the polarity
discontinuity of the interfaces. Stronger incoherent part was observed in
r-TiO/VO than in a-TiO/VO, suggesting Ti-V atomic diffusion due
to the higher deposition temperature for r-TiO/VO.Comment: 5 pages, 6 figure
RIM-Binding Protein 2 organizes Ca2+channel topography and regulates release probability and vesicle replenishment at a fast central synapse
RIM-Binding Protein 2 (RIM-BP2) is a multi-domain protein of the presynaptic active zone (AZ). By binding to Rab-interacting protein (RIM), bassoon and voltage-gated Ca²⁺channels (CaV), it is considered to be a central organizer of the topography of CaVand release sites of synaptic vesicles (SVs) at the AZ. Here, we investigated the role of RIM-BP2 at the endbulb of Held synapse of auditory nerve fibers with bushy cells of the cochlear nucleus, a fast relay of the auditory pathway with high release probability. Disruption of RIM-BP2 lowered release probability altering short-term plasticity and reduced evoked excitatory postsynaptic currents (EPSCs). Analysis of SV pool dynamics during high frequency train stimulation indicated a reduction of SVs with high release probability but an overall normal size of the readily releasable SV pool (RRP). The Ca2+-dependent fast component of SV replenishment after RRP depletion was slowed. Ultrastructural analysis by super-resolution light and electron microscopy revealed an impaired topography of presynaptic CaVand a reduction of docked and membrane-proximal SVs at the AZ. We conclude that RIM-BP2 organizes the topography of CaV, and promotes SV tethering and docking. This way RIM-BP2 is critical for establishing a high initial release probability as required to reliably signal sound onset information that we found to be degraded in bushy cells of RIM-BP2-deficient mice in vivo
Neural substrates for the distinct effects of presynaptic group III metabotropic glutamate receptors on extinction of contextual fear conditioning in mice
The group III metabotropic glutamate (mGlu) receptors mGlu7 and mGlu8 are receiving increased attention as potential novel therapeutic targets for anxiety disorders. The effects mediated by these receptors appear to result from a complex interplay of facilitatory and inhibitory actions at different brain sites in the anxiety/fear circuits. To better understand the effect of mGlu7 and mGlu8 receptors on extinction of contextual fear and their critical sites of action in the fear networks, we focused on the amygdala. Direct injection into the basolateral complex of the amygdala of the mGlu7 receptor agonist AMN082 facilitated extinction, whereas the mGlu8 receptor agonist (S)-3,4-DCPG sustained freezing during the extinction acquisition trial. We also determined at the ultrastructural level the synaptic distribution of these receptors in the basal nucleus (BA) and intercalated cell clusters (ITCs) of the amygdala. Both areas are thought to exert key roles in fear extinction. We demonstrate that mGlu7 and mGlu8 receptors are located in different presynaptic terminals forming both asymmetric and symmetric synapses, and that they preferentially target neurons expressing mGlu1α receptors mostly located around ITCs. In addition we show that mGlu7 and mGlu8 receptors were segregated to different inputs to a significant extent. In particular, mGlu7a receptors were primarily onto glutamatergic afferents arising from the BA or midline thalamic nuclei, but not the medial prefrontal cortex (mPFC), as revealed by combined anterograde tracing and pre-embedding electron microscopy. On the other hand, mGlu8a showed a more restricted distribution in the BA and appeared absent from thalamic, mPFC and intrinsic inputs. This segregation of mGlu7 and mGlu8 receptors in different neuronal pathways of the fear circuit might explain the distinct effects on fear extinction training observed with mGlu7 and mGlu8 receptor agonists. This article is part of a Special Issue entitled 'Metabotropic Glutamate Receptors'. © 2012 Elsevier Ltd. All rights reserved
Classical and Quantum Solutions and the Problem of Time in Cosmology
We have studied various classical solutions in cosmology. Especially we
have obtained general classical solutions in pure \ cosmology. Even in the
quantum theory, we can solve the Wheeler-DeWitt equation in pure \
cosmology exactly. Comparing these classical and quantum solutions in \
cosmology, we have studied the problem of time in general relativity.Comment: 17 pages, latex, no figure, one reference is correcte
Distinct subsynaptic localization of type 1 metabotropic glutamate receptors at glutamatergic and GABAergic synapses in the rodent cerebellar cortex
Type 1 metabotropic glutamate (mGlu1) receptors play a pivotal role in different forms of synaptic plasticity in the cerebellar cortex, e.g. long-term depression at glutamatergic synapses and rebound potentiation at GABAergic synapses. These various forms of plasticity might depend on the subsynaptic arrangement of the receptor in Purkinje cells that can be regulated by protein-protein interactions. This study investigated, by means of the freeze-fracture replica immunogold labelling method, the subcellular localization of mGlu1 receptors in the rodent cerebellum and whether Homer proteins regulate their subsynaptic distribution. We observed a widespread extrasynaptic localization of mGlu1 receptors and confirmed their peri-synaptic enrichment at glutamatergic synapses. Conversely, we detected mGlu1 receptors within the main body of GABAergic synapses onto Purkinje cell dendrites. Although Homer proteins are known to interact with the mGlu1 receptor C-terminus, we could not detect Homer3, the most abundant Homer protein in the cerebellar cortex, at GABAergic synapses by pre-embedding and post-embedding immunoelectron microscopy. We then hypothesized a critical role for Homer proteins in the peri-junctional localization of mGlu1 receptors at glutamatergic synapses. To disrupt Homer-associated protein complexes, mice were tail-vein injected with the membrane-permeable dominant-negative TAT-Homer1a. Freeze-fracture replica immunogold labelling analysis showed no significant alteration in the mGlu1 receptor distribution pattern at parallel fibre-Purkinje cell synapses, suggesting that other scaffolding proteins are involved in the peri-synaptic confinement. The identification of interactors that regulate the subsynaptic localization of the mGlu1 receptor at neurochemically distinct synapses may offer new insight into its trafficking and intracellular signalling
- …