159 research outputs found

    Convergence of the Linear Delta Expansion in the Critical O(N) Field Theory

    Full text link
    The linear delta expansion is applied to the 3-dimensional O(N) scalar field theory at its critical point in a way that is compatible with the large-N limit. For a range of the arbitrary mass parameter, the linear delta expansion for converges, with errors decreasing like a power of the order n in delta. If the principal of minimal sensitivity is used to optimize the convergence rate, the errors seem to decrease exponentially with n.Comment: 26 pages, latex, 8 figure

    The Density Matrix Renormalization Group applied to single-particle Quantum Mechanics

    Full text link
    A simplified version of White's Density Matrix Renormalization Group (DMRG) algorithm has been used to find the ground state of the free particle on a tight-binding lattice. We generalize this algorithm to treat the tight-binding particle in an arbitrary potential and to find excited states. We thereby solve a discretized version of the single-particle Schr\"odinger equation, which we can then take to the continuum limit. This allows us to obtain very accurate results for the lowest energy levels of the quantum harmonic oscillator, anharmonic oscillator and double-well potential. We compare the DMRG results thus obtained with those achieved by other methods.Comment: REVTEX file, 21 pages, 3 Tables, 4 eps Figure

    Precise variational tunneling rates for anharmonic oscillator with g<0

    Full text link
    We systematically improve the recent variational calculation of the imaginary part of the ground state energy of the quartic anharmonic oscillator. The results are extremely accurate as demonstrated by deriving, from the calculated imaginary part, all perturbation coefficients via a dispersion relation and reproducing the exact values with a relative error of less than 10510^{-5}. A comparison is also made with results of a Schr\"{o}dinger calculation based on the complex rotation method.Comment: PostScrip

    Improved Conformal Mapping of the Borel Plane

    Full text link
    The conformal mapping of the Borel plane can be utilized for the analytic continuation of the Borel transform to the entire positive real semi-axis and is thus helpful in the resummation of divergent perturbation series in quantum field theory. We observe that the rate of convergence can be improved by the application of Pad\'{e} approximants to the Borel transform expressed as a function of the conformal variable, i.e. by a combination of the analytic continuation via conformal mapping and a subsequent numerical approximation by rational approximants. The method is primarily useful in those cases where the leading (but not sub-leading) large-order asymptotics of the perturbative coefficients are known.Comment: 6 pages, LaTeX, 2 tables; certain numerical examples adde

    Critical thermodynamics of three-dimensional MN-component field model with cubic anisotropy from higher-loop \epsilon expansion

    Full text link
    The critical thermodynamics of an MNMN-component field model with cubic anisotropy relevant to the phase transitions in certain crystals with complicated ordering is studied within the four-loop \ve expansion using the minimal subtraction scheme. Investigation of the global structure of RG flows for the physically significant cases M=2, N=2 and M=2, N=3 shows that the model has an anisotropic stable fixed point with new critical exponents. The critical dimensionality of the order parameter is proved to be equal to NcC=1.445(20)N_c^C=1.445(20), that is exactly half its counterpart in the real hypercubic model.Comment: 9 pages, LaTeX, no figures. Published versio

    Improved perturbation theory in the vortex liquids state of type II superconductors

    Full text link
    We develop an optimized perturbation theory for the Ginzburg - Landau description of thermal fluctuations effects in the vortex liquids. Unlike the high temperature expansion which is asymptotic, the optimized expansion is convergent. Radius of convergence on the lowest Landau level is aT=3a_{T}=-3 in 2D and aT=5a_{T}=-5 in 3D. It allows a systematic calculation of magnetization and specific heat contributions due to thermal fluctuations of vortices in strongly type II superconductors to a very high precision. The results are in good agreement with existing Monte Carlo simulations and experiments. Limitations of various nonperturbative and phenomenological approaches are noted. In particular we show that there is no exact intersection point of the magnetization curves both in 2D and 3D.Comment: 24 pages, 9 figure

    On the Divergence of Perturbation Theory. Steps Towards a Convergent Series

    Full text link
    The mechanism underlying the divergence of perturbation theory is exposed. This is done through a detailed study of the violation of the hypothesis of the Dominated Convergence Theorem of Lebesgue using familiar techniques of Quantum Field Theory. That theorem governs the validity (or lack of it) of the formal manipulations done to generate the perturbative series in the functional integral formalism. The aspects of the perturbative series that need to be modified to obtain a convergent series are presented. Useful tools for a practical implementation of these modifications are developed. Some resummation methods are analyzed in the light of the above mentioned mechanism.Comment: 42 pages, Latex, 4 figure

    Separase: a universal trigger for sister chromatid disjunction but not chromosome cycle progression

    Get PDF
    Separase is a protease whose liberation from its inhibitory chaperone Securin triggers sister chromatid disjunction at anaphase onset in yeast by cleaving cohesin's kleisin subunit. We have created conditional knockout alleles of the mouse Separase and Securin genes. Deletion of both copies of Separase but not Securin causes embryonic lethality. Loss of Securin reduces Separase activity because deletion of just one copy of the Separase gene is lethal to embryos lacking Securin. In embryonic fibroblasts, Separase depletion blocks sister chromatid separation but does not prevent other aspects of mitosis, cytokinesis, or chromosome replication. Thus, fibroblasts lacking Separase become highly polyploid. Hepatocytes stimulated to proliferate in vivo by hepatectomy also become unusually large and polyploid in the absence of Separase but are able to regenerate functional livers. Separase depletion in bone marrow causes aplasia and the presumed death of hematopoietic cells other than erythrocytes. Destruction of sister chromatid cohesion by Separase may be a universal feature of mitosis in eukaryotic cells

    Solvable simulation of a double-well problem in PT symmetric quantum mechanics

    Full text link
    Within quantum mechanics which works with parity-pseudo-Hermitian Hamiltonians we study the tunneling in a symmetric double well formed by two delta functions with complex conjugate strengths. The model is exactly solvable and exhibits several interesting features. Besides an amazingly robust absence of any PT symmetry breaking, we observe a quasi-degeneracy of the levels which occurs all over the energy range including the high-energy domain. This pattern is interpreted as a manifestation of certain "quantum beats".Comment: 12 pages incl. 7 figure
    corecore