33 research outputs found

    Dielectric tuning and coupling of whispering gallery modes using an anisotropic prism

    Full text link
    Optical whispering gallery mode (WGM) resonators are a powerful and versatile tool used in many branches of science. Fine tuning of the central frequency and line width of individual resonances is however desirable in a number of applications including frequency conversion, optical communications and efficient light-matter coupling. To this end we present a detailed theoretical analysis of dielectric tuning of WGMs supported in axisymmetric resonators. Using the Bethe-Schwinger equation and adopting an angular spectrum field representation we study the resonance shift and mode broadening of high QQ WGMs when a planar dielectric substrate is brought close to the resonator. Particular focus is given to use of a uniaxial substrate with an arbitrarily aligned optic axis. Competing red and blue resonance shifts (∼30\sim 30 MHz), deriving from generation of a near field material polarisation and back action from the radiation continuum respectively, are found. Anomalous resonance shifts can hence be observed depending on the substrate material, whereas mode broadening on the order of ∼50\sim 50 MHz can also be simply realised. Furthermore, polarisation selective coupling with extinction ratios of >104> 10^4 can be achieved when the resonator and substrate are of the same composition and their optic axes are chosen correctly. Double refraction and properties of out-coupled beams are also discussed

    Charakterisierung der Leistungsfähigkeit von PEM-Wasser-Elektrolysezellen, die mit und ohne Strömungskanäle arbeiten, basierend auf experimentell validierten semi-empirischen gekoppelten physikalischen Modellen

    Get PDF
    PEM water electrolysis is a clean technology for hydrogen production. In spite of its many advantages, the costs of the conventional PEM electrolysis cell makes it commercially less competitive vis-à-vis its peers. An alternative cell design has been proposed which has up to a 25 % costs advantage over the conventional cell. In this alternative cell design, the flow channel plate which bears the most costs in the conventional cell design has been replaced with a 3-D Porous Transport Layer (PTL) structure. It has however, been observed that the conventional cell by far out performs the low cost cell at high current density operations, due to increased mass transport limitation in the later. Industrial and commercial hydrogen production efforts are focused towards high current density operation (> 3 A/cm²), so the alternative cell design must be optimized for mass transport limitation. PEM water electrolysis is a clean technology for hydrogen production. In spite of its many advantages, the costs of the conventional PEM electrolysis cell makes it commercially less competitive vis-à-vis its peers. An alternative cell design has been proposed which has up to a 25 % costs advantage over the conventional cell. In this alternative cell design, the flow channel plate which bears the most costs in the conventional cell design has been replaced with a 3-D Porous Transport Layer (PTL) structure. It has however, been observed that the conventional cell by far out performs the low cost cell at high current density operations, due to increased mass transport limitation in the later. Industrial and commercial hydrogen production efforts are focused towards high current density operation (> 3 A/cm²), so the alternative cell design must be optimized for mass transport limitation. This work seeks to understand the source of, and to eliminate the mass transport losses in the alternative cell design to get it performing at least as good as the conventional cell at current densities up to 5 A/cm². A 2-D non-isothermal semi-empirical fully-coupled models of both cell designs have been developed and experimentally validated. The developed validated models were then used as tools to simulate and predict the best operating conditions, design parameters and micro-structural properties of the PTL at which the mass transport issues in the alternate cell will be at its minimum, at high current densities. The models are based on a multi-physics approach in which thermodynamic, electrochemical, thermal and mass transport sub-models are coupled and solved numerically, to predict the cell polarization and individual overpotentials, as well as address heat and water management issues. The most unique aspect of this work however, is the development of own semi-empirical equations for predicting the mass transport overpotential imposed by the gas phase (bubbles) at high current densities. For the very first time, calculated polarization curves up to 5 A/cm² have been validated by own experimental data. The results show that, the temperature and pressure, water flowrate and thickness of the PTL are the critical parameters for mitigating mass transport limitation. It was found that, for the size of the cells studied (25 cm² active area each), when both cells are operating at the same temperature of 60 °C, alternative design will have a comparable performance to the conventional designed cell even at 5 A/cm² current density when; the operating pressure is ≥ 5 bar, the feed water flowrate is ≥ 0.024l/min∙cm², PTL porosity is 50 %, PTL pore size is ≥ 11 µm and PTL thickness is 0.5 mm. At these operating, design and micro-structural conditions, the predicted difference between the polarizations of both cells will be only ~10 mV at 5 A/cm² operating current density.Die PEM Wasser Elektrolyse gilt als effiziente Technologie zur Herstellung von sauberem Wasserstoff zur Energiespeicherung. Trotz der vielen Vorteile führen hohe Kosten für die Produktion konventioneller Komponenten und Stacks zu einer nicht konkurrenzfähigen Technologie. Ein alternatives und kostengünstiges Zelldesign wurde vorgestellt, das, verglichen mit einem konventionellen Design, einen Kostenvorteil von bis zu 25 % hervorbringt. Bei diesem alternativen Zelldesign wird die Platte mit Strömungskanälen, die den größten Kostenanteil birgt, durch eine 3-D poröse Struktur (PTL) ersetzt. Bei hohen Stromdichten zeigt aber ein Design ohne Strömungskanäle niedrigere Leistungsdaten, was durch eine gesteigerte Limitierung des Massentransportes erklärt werden kann. Da sich die industrielle und kommerzielle Wasserstoffproduktion in Richtung hoher Stromdichten (> 3 A/cm²) entwickelt, scheint das erforderliche Verständnis von Massentransporteffekten offensichtlich das kosteneffiziente Design gegenüber dem konventionellen Design voran zu treiben. Diese Arbeit versucht den Ursprung von Massentransportlimitierung des kostengünstigen Zelldesigns zu verstehen und zu eliminieren. Um diese Zielvorgabe zu erreichen, wurden 2-D nicht-isotherme, semi-empirische, vollständig gekoppelte Modelle beider Zelldesigns entwickelt und experimentell validiert. Die entwickelten und validierten Modelle wurden als Werkzeug zur Simulation und Vorhersage der am besten geeigneten Betriebs- und Designparameter, sowie Eigenschaften der Mikrostrukur der PTL verwendet. Die hierin entwickelten Modelle basieren auf einem multiphysikalischen Ansatz, worin thermodynamische, elektrische und thermische Effekte sowie Massentransportuntermodelle gekoppelt und gelöst wurden, um sowohl die Zellpolarisation und individuelle Überpotentiale vorherzusagen, als auch Wärme- und Wassermanagement zu adressieren. Das Alleinstellungsmerkmal dieser Arbeit ist jedoch die Entwicklung von semi-empirischen Gleichungen, um die Überpotentiale der Massentransporthemmung, ausgehend von Gasblasen, vorhersagen zu können. Ebenso wurden zum ersten Mal berechnete PEM Wasser Elektrolyse Polarisationskurven bis zu einer Stromdichte von 5 A/cm² mit eigenen Daten validiert. Die Ergebnisse zeigen, dass Temperatur und Druck, sowie Wasserflußrate und Dicke der PTL die kritischen Parameter sind, um Massentransportlimitierung zu vermeiden. Es wurde sogar gezeigt, dass bei der verwendeten Zellgröße (aktive Fläche = 25 cm²) vergleichbare Leistungsdaten bei 60 °C und 5 A/cm² erreicht werden können, sofern der Betriebsdruck 5 bar übersteigt, die Wasserflussrate größer als 0.024 l/min ist, die Porosität der PTL 50 % übersteigt, die Porendurchmesser größer als 11 µm sind und die PTL Dicke bei 0.5 mm liegt. Bei diesen Parametern wurden Unterschiede zwischen den beiden Zelldesigns von etwa 10 mV bei 5 A/cm² vorhergesagt

    Polarization-selective out-coupling of whispering gallery modes

    Get PDF
    Whispering gallery mode (WGM) resonators are an important platform for linear, nonlinear and quantum optical experiments. In such experiments, independent control of in- and out-coupling rates to different modes can lead to higher conversion efficiencies and greater flexibility in the generation of non-classical states based on parametric down conversion. In this work, we introduce a scheme that enables selective out-coupling of WGMs belonging to a specific polarization family, while the orthogonally polarized modes remain largely unperturbed. Our technique utilizes material birefringence in both the resonator and the coupler such that a negative (positive) birefringence allows for polarization-selective coupling to TE (TM) WGMs. We formulate a new coupling condition suitable for describing the case where the refractive indices of the resonator and the coupler are almost the same, from which we derive a criterion for polarization-selective coupling. Finally, we experimentally demonstrate our proposed method using a lithium niobate disk resonator coupled to a lithium niobate prism, where we show a \SI{22}{dB} suppression of coupling to TM modes relative to TE modes

    Comment on "Quantum Scattering of Heavy Particles from a 10 K Cu(111) Surface"

    Full text link
    In the original paper Althoff et al. (see ibid., vol.79, p.4429 (1997)) reported a study of scattering of thermal Ne, Ar, and Kr atoms from a Cu(111) surface in which they assessed the corresponding Debye-Waller factor (DWF) as a function of the particle mass m in a wide range of substrate temperature T. The experiments were interpreted by the semiclassical DWF theory in which the projectile moves on the classical recoilless trajectory and the surface vibrations are quantized. Siber and Gumhalter claim that the experiments described by Althoff et al. were carried out in the quantum scattering regime in which the semiclassical scalings of Althoff et al. do not hold and the semiclassical DWE significantly deviates from the exact quantum one both in the low and high T limits. Hence, it is claimed, the quantum scattering data of Althoff et al. cannot be reliably interpreted by the semiclassical theory.Comment: 1 page (2 figures) - comment in Phys. Rev. Let

    The standard quantum limit of coherent beam combining

    Get PDF
    Abstract Coherent beam combining refers to the process of generating a bright output beam by merging independent input beams of individually diffusing relative phases by locking them to each other. We report the first quantum mechanical noise limit calculations for coherent beam combining and compare our results to quantum-limited amplification. Our coherent beam combining scheme is based on an optical Fourier transformation which renders the scheme compatible with integrated optics combined with feed-back stabilization of the relative phases. The scheme can be layed out for an arbitrary number of input beams and approaches the shot noise limit for a large number of inputs

    Quantum-limited measurements of intensity noise levels in Yb-doped fiber amplifiers

    Get PDF
    Abstract We investigate the frequency-resolved intensity noise spectrum of an Yb-doped fiber amplifier down to the fundamental limit of quantum noise. We focus on the kHz and low MHz frequency regime with special interest in the region between 1 and 10 kHz. Intensity noise levels up to ≥60 dB above the shot noise limit are found, revealing great optimization potential. Additionally, two seed lasers with different noise characteristics were amplified, showing that the seed source has a significant impact and should be considered in the design of high power fiber amplifiers

    Crystalline MgF2 whispering gallery mode resonators for enhanced bulk index sensitivity

    No full text
    We report on experiments on refractrometric sensing with crystalline Whispering Gallery Mode (WGM) resonators made of magnesium fluoride, which has a refractive index that is only slightly larger than that of water (Delta n approximate to 0.05). The resulting evanescent field of a WGM resonator placed in an aqueous environment penetrates therefore deep into the surrounding medium, which makes it a promising candidate for sensing applications. We measured a bulk index sensitivity of 1.09 nm/RIU (refractive index unit) in a resonator with a radius of R = 2.91mm and intrinsic Q-factors of more than 10(8) in aqueous environments. Furthermore, we describe the fabrication process of crystalline WGM resonators

    Electro-optic frequency comb generation in lithium niobate whispering gallery mode resonators

    No full text
    Optical frequency combs (OFCs) are light sources whose spectra consists of equally spaced frequency lines in the optical domain [1]. They have great potential for improving high-capacity data transfer, all-optical atomic clocks, spectroscopy, and high-precision measurements [2]
    corecore