2,222 research outputs found

    Push it to the limit: Local Group constraints on high-redshift stellar mass functions for Mstar > 10^5 Msun

    Full text link
    We constrain the evolution of the galaxy stellar mass function from 2 < z < 5 for galaxies with stellar masses as low as 10^5 Msun by combining star formation histories of Milky Way satellite galaxies derived from deep Hubble Space Telescope observations with merger trees from the ELVIS suite of N-body simulations. This approach extends our understanding more than two orders of magnitude lower in stellar mass than is currently possible by direct imaging. We find the faint end slopes of the mass functions to be alpha= -1.42(+0.07/-0.05) at z = 2 and alpha = -1.57^(+0.06/-0.06) at z = 5, and show the slope only weakly evolves from z = 5 to z = 0. Our findings are in stark contrast to a number of direct detection studies that suggest slopes as steep as alpha = -1.9 at these epochs. Such a steep slope would result in an order of magnitude too many luminous Milky Way satellites in a mass regime that is observationally complete (Mstar > 2*10^5 Msun at z = 0). The most recent studies from ZFOURGE and CANDELS also suggest flatter faint end slopes that are consistent with our results, but with a lower degree of precision. This work illustrates the strong connections between low and high-z observations when viewed through the lens of LCDM numerical simulations

    The Local Group: The Ultimate Deep Field

    Full text link
    Near-field cosmology -- using detailed observations of the Local Group and its environs to study wide-ranging questions in galaxy formation and dark matter physics -- has become a mature and rich field over the past decade. There are lingering concerns, however, that the relatively small size of the present-day Local Group (∼2\sim 2 Mpc diameter) imposes insurmountable sample-variance uncertainties, limiting its broader utility. We consider the region spanned by the Local Group's progenitors at earlier times and show that it reaches 3′≈73' \approx 7 co-moving Mpc in linear size (a volume of ≈350 Mpc3\approx 350\,{\rm Mpc}^3) at z=7z=7. This size at early cosmic epochs is large enough to be representative in terms of the matter density and counts of dark matter halos with Mvir(z=7)≲2×109 M⊙M_{\rm vir}(z=7) \lesssim 2\times 10^{9}\,M_{\odot}. The Local Group's stellar fossil record traces the cosmic evolution of galaxies with 103≲M⋆(z=0)/M⊙≲10910^{3} \lesssim M_{\star}(z=0) / M_{\odot} \lesssim 10^{9} (reaching M1500>−9M_{1500} > -9 at z∼7z\sim7) over a region that is comparable to or larger than the Hubble Ultra-Deep Field (HUDF) for the entire history of the Universe. It is highly complementary to the HUDF, as it probes much fainter galaxies but does not contain the intrinsically rarer, brighter sources that are detectable in the HUDF. Archaeological studies in the Local Group also provide the ability to trace the evolution of individual galaxies across time as opposed to evaluating statistical connections between temporally distinct populations. In the JWST era, resolved stellar populations will probe regions larger than the HUDF and any deep JWST fields, further enhancing the value of near-field cosmology.Comment: 6 pages, 5 figures; MNRAS Letters, in pres

    Perturbative Renormalization Factors of Bilinear Quark Operators for Improved Gluon and Quark Actions in Lattice QCD

    Get PDF
    We calculate one-loop renormalization factors of bilinear quark operators for gluon action including six-link loops and O(a)O(a)-improved quark action in the limit of massless quark. We find that finite parts of one-loop coefficients of renormalization factors diminish monotonically as either of the coefficients c1c_1 or c2+c3c_2+c_3 of the six-link terms are decreased below zero. Detailed numerical results are given, for general values of the clover coefficient, for the tree-level improved gluon action in the Symanzik approach (c1=−1/12,c2=c3=0)(c_1=-1/12, c_2=c_3=0) and for the choices suggested by Wilson (c1=−0.252,c2=0,c3=−0.17)(c_1=-0.252, c_2=0, c_3=-0.17) and by Iwasaki (c1=−0.331,c2=c3=0(c_1=-0.331, c_2=c_3=0 and c1=−0.27,c2+c3=−0.04)c_1=-0.27, c_2+c_3=-0.04) from renormalization-group analyses. Compared with the case of the standard plaquette gluon action, finite parts of one-loop coefficients are reduced by 10--20% for the Symanzik action, and approximately by a factor two for the renormalization-group improved gluon actions.Comment: 19 pages, REVTeX, with 3 epsf figure

    BB Potentials in Quenched Lattice QCD

    Full text link
    The potentials between two B-mesons are computed in the heavy-quark limit using quenched lattice QCD at mπ∼400 MeVm_\pi\sim 400~{\rm MeV}. Non-zero central potentials are clearly evident in all four spin-isospin channels, (I,s_l) = (0,0) , (0,1) , (1,0) , (1,1), where s_l is the total spin of the light degrees of freedom. At short distance, we find repulsion in the I≠slI\ne s_l channels and attraction in the I=s_l channels. Linear combinations of these potentials that have well-defined spin and isospin in the t-channel are found, in three of the four cases, to have substantially smaller uncertainties than the potentials defined with the s-channel (I,s_l), and allow quenching artifacts from single hairpin exchange to be isolated. The BB*\pi coupling extracted from the long-distance behavior of the finite-volume t-channel potential is found to be consistent with quenched calculations of the matrix element of the isovector axial-current. The tensor potentials in both of the s_l = 1 channels are found to be consistent with zero within calculational uncertainties.Comment: 30 page

    Perturbative renormalization factors in domain-wall QCD with improved gauge actions

    Get PDF
    We evaluate renormalization factors of the domain-wall fermion system with various improved gauge actions at one loop level. The renormalization factors are calculated for quark wave function, quark mass, bilinear quark operators, three- and four-quark operators in modified minimal subtraction (MS-bar) scheme with the dimensional reduction(DRED) as well as the naive dimensional regularization(NDR). We also present detailed results in the mean field improved perturbation theory.Comment: 44 page

    A quark action for very coarse lattices

    Full text link
    We investigate a tree-level O(a^3)-accurate action, D234c, on coarse lattices. For the improvement terms we use tadpole-improved coefficients, with the tadpole contribution measured by the mean link in Landau gauge. We measure the hadron spectrum for quark masses near that of the strange quark. We find that D234c shows much better rotational invariance than the Sheikholeslami-Wohlert action, and that mean-link tadpole improvement leads to smaller finite-lattice-spacing errors than plaquette tadpole improvement. We obtain accurate ratios of lattice spacings using a convenient ``Galilean quarkonium'' method. We explore the effects of possible O(alpha_s) changes to the improvement coefficients, and find that the two leading coefficients can be independently tuned: hadron masses are most sensitive to the clover coefficient, while hadron dispersion relations are most sensitive to the third derivative coefficient C_3. Preliminary non-perturbative tuning of these coefficients yields values that are consistent with the expected size of perturbative corrections.Comment: 22 pages, LaTe

    Heavy-light mesons with staggered light quarks

    Get PDF
    We demonstrate the viability of improved staggered light quarks in studies of heavy-light systems. Our method for constructing heavy-light operators exploits the close relation between naive and staggered fermions. The new approach is tested on quenched configurations using several staggered actionsn combined with nonrelativistic heavy quarks. The B_s meson kinetic mass, the hyperfine and 1P-1S splittings in B_s, and the decay constant f_{B_s} are calculated and compared to previous quenched lattice studies. An important technical detail, Bayesian curve-fitting, is discussed at length.Comment: 38 pages, figures included. v2: Entry in Table IX corrected and other minor changes, version appearing in Phys. Rev.

    Comparison Studies of Finite Momentum Correlators on Anisotropic and Isotropic Lattices

    Get PDF
    We study hadronic two- and three-point correlators relevant for heavy to light pseudoscalar meson semi-leptonic decays, using Symanzik improved glue, D234 light quark and NRQCD heavy quark actions. Detailed comparisons are made between simulations on anisotropic and isotropic lattices involving finite momentum hadrons. We find evidence that having an anisotropy helps in extracting better signals at higher momenta. Initial results for the form factors f_+(q^2) and f_0(q^2) are presented with tree-level matching of the lattice heavy-light currents.Comment: 43 pages with 50 postscript figure

    A Predicted Correlation Between Age Gradient and Star Formation History in FIRE Dwarf Galaxies

    Get PDF
    We explore the radial variation of star formation histories in dwarf galaxies simulated with Feedback In Realistic Environments (FIRE) physics. The sample contains 9 low-mass field dwarfs with M_ star = 10^5 - 10^7 M_sun from previous FIRE results, and a new suite of 17 higher mass field dwarfs with M_star = 10^7 - 10^9 M_sun introduced here. We find that age gradients are common in our dwarfs, with older stars dominant at large radii. The strength of the gradient correlates with overall galaxy age such that earlier star formation produces a more pronounced gradient. The relation between formation time and strength of the gradient is driven by both mergers and star-formation feedback. Mergers can both steepen and flatten the age gradient depending on the timing of the merger and star formation history of the merging galaxy. In galaxies without significant mergers, early feedback pushes stars to the outskirts at early times. Interestingly, among galaxies without mergers, those with large dark matter cores have flatter age gradients because these galaxies have more late-time feedback. If real galaxies have age gradients as we predict, stellar population studies that rely on sampling a limited fraction of a galaxy can give a biased view of its global star formation history. We show that central fields can be biased young by a few Gyrs while outer fields are biased old. Fields positioned near the 2D half-light radius will provide the least biased measure of a dwarf galaxy's global star formation history.Comment: 13 pages, 8 figures. Submitted to MNRAS, comments welcom

    Non-perturbative quark mass renormalization

    Get PDF
    We show that the renormalization factor relating the renormalization group invariant quark masses to the bare quark masses computed in lattice QCD can be determined non-perturbatively. The calculation is based on an extension of a finite-size technique previously employed to compute the running coupling in quenched QCD. As a by-product we obtain the Λ\Lambda--parameter in this theory with completely controlled errors.Comment: Talk given at LATTICE '97, 6 pages, Latex source, 7 eps figures, needs epsfi
    • …
    corecore