5,848 research outputs found

    The energy partitioning of non-thermal particles in a plasma: or the Coulomb logarithm revisited

    Full text link
    The charged particle stopping power in a highly ionized and weakly to moderately coupled plasma has been calculated to leading and next-to-leading order by Brown, Preston, and Singleton (BPS). After reviewing the main ideas behind this calculation, we use a Fokker-Planck equation derived by BPS to compute the electron-ion energy partitioning of a charged particle traversing a plasma. The motivation for this application is ignition for inertial confinement fusion -- more energy delivered to the ions means a better chance of ignition, and conversely. It is therefore important to calculate the fractional energy loss to electrons and ions as accurately as possible, as this could have implications for the Laser Megajoule (LMJ) facility in France and the National Ignition Facility (NIF) in the United States. The traditional method by which one calculates the electron-ion energy splitting of a charged particle traversing a plasma involves integrating the stopping power dE/dx. However, as the charged particle slows down and becomes thermalized into the background plasma, this method of calculating the electron-ion energy splitting breaks down. As a result, the method suffers a systematic error of order T/E0, where T is the plasma temperature and E0 is the initial energy of the charged particle. In the case of DT fusion, for example, this can lead to uncertainties as high as 10% or so. The formalism presented here is designed to account for the thermalization process, and in contrast, it provides results that are near-exact.Comment: 10 pages, 3 figures, invited talk at the 35th European Physical Society meeting on plasma physic

    Opening of DNA double strands by helicases. Active versus passive opening

    Get PDF
    Helicase opening of double-stranded nucleic acids may be "active" (the helicase directly destabilizes the dsNA to promote opening) or "passive" (the helicase binds ssNA available due to a thermal fluctuation which opens part of the dsNA). We describe helicase opening of dsNA, based on helicases which bind single NA strands and move towards the double-stranded region, using a discrete ``hopping'' model. The interaction between the helicase and the junction where the double strand opens is characterized by an interaction potential. The form of the potential determines whether the opening is active or passive. We calculate the rate of passive opening for the helicase PcrA, and show that the rate increases when the opening is active. Finally, we examine how to choose the interaction potential to optimize the rate of strand separation. One important result is our finding that active opening can increase the unwinding rate by 7 fold compared to passive opening.Comment: 13 pages, 3 figure

    Comparison of the Fermi-surface topologies of kappa-(BEDT-TTF)_2 Cu(NCS)_2 and its deuterated analogue

    Full text link
    We have measured details of the quasi one-dimensional Fermi-surface sections in the organic superconductor kappa-(BEDT-TTF)_2 Cu(NCS)_2 and its deuterated analogue using angle-dependent millimetre-wave techniques. There are significant differences in the corrugations of the Fermi surfaces in the deuterated and undeuterated salts. We suggest that this is important in understanding the inverse isotope effect, where the superconducting transition temperature rises on deuteration. The data support models for superconductivity which invoke electron-electron interactions depending on the topological properties of the Fermi surface

    Persistence to high temperatures of interlayer coherence in an organic superconductor

    Full text link
    The interlayer magnetoresistance ρzz\rho_{zz} of the organic metal \cuscn is studied in fields of up to 45 T and at temperatures TT from 0.5 K to 30 K. The peak in ρzz\rho_{zz} seen in in-plane fields, a definitive signature of interlayer coherence, remains to TTs exceeding the Anderson criterion for incoherent transport by a factor 30\sim 30. Angle-dependent magnetoresistance oscillations are modeled using an approach based on field-induced quasiparticle paths on a 3D Fermi surface, to yield the TT dependence of the scattering rate τ1\tau^{-1}. The results suggest that τ1\tau^{-1} does not vary strongly over the Fermi surface, and that it has a T2T^2 dependence due to electron-electron scattering

    Crisis management during anaesthesia: vascular access problems

    Get PDF
    © 2005 BMJ Publishing Group Ltd.Background: In confronting an evolving crisis, the anaesthetist should consider the vascular catheter as a potential cause, abandoning assumptions that the device has been satisfactorily placed and is functioning correctly. Objectives: To examine the role of a previously described core algorithm "COVER ABCD–A SWIFT CHECK", supplemented by a specific sub-algorithm for vascular access problems, in the management of crises occurring in association with anaesthesia. Methods: The potential performance of a structured approach was evaluated for each of the relevant incidents among the first 4000 reported to the Australian Incident Monitoring Study (AIMS). Results: There were 128 incidents involving problems related to vascular access. The structured approach begins distally, checking the infusion device or fluid (12 incidents), moving proximally by way of the fluid giving line (10), the line deadspace (8), then the catheter/skin interface (65), and on to the peripheral vascular tree (3) and central venous space (23), and finally, the interface of the vascular access system and the attending staff (7). The approach was able to accommodate all the vascular access problems among the first 4000 incidents reported to AIMS. Conclusion: The approach has potential as an easily remembered and applied clinical tool to lead to early resolution of vascular access problems occurring during anaesthesia

    Crisis management during anaesthesia: water intoxication

    Get PDF
    © 2005 BMJ Publishing Group Ltd.Background: Irrigation of closed body spaces may lead to substantial perioperative fluid and electrolyte shifts. A syndrome occurring during transurethral resection of prostate (TURP), and a similar syndrome described in women undergoing transcervical endometrial ablation (TCEA) are both characterised by a spectrum of symptoms which may range from asymptomatic hyponatraemia to convulsions, coma, and death. Such potentially serious consequences require prompt recognition and appropriate management of this "water intoxication" syndrome. Objectives: To examine the role of a previously described core algorithm "COVER ABCD–A SWIFT CHECK", supplemented by a specific sub-algorithm for water intoxication, in the management of this syndrome occurring in association with anaesthesia. Methods: The potential performance of this structured approach for each of the relevant incidents among the first 4000 reported to the Australian Incident Monitoring Study (AIMS) was compared with the actual management as reported by the anaesthetists involved. Results: From the first 4000 incidents reported to AIMS, 10 reports of water intoxication were identified, two from endometrial ablations under general anaesthesia and eight from male urological procedures under spinal anaesthesia. The "core" crisis management algorithm detected a problem in seven cases; however, it was deficient in dealing with neurological presentations. Diagnosis of the cause of the incident would have required a specific water intoxication sub-algorithm in eight cases and a hypotension algorithm in a further two cases. Corrective strategies also required a specific sub-algorithm in eight cases, while the hypotension and cardiac arrest sub-algorithms were required in conjunction with the water intoxication sub-algorithm in the remaining two.M T Kluger, S M Szekely, R J Singleton, S C Help

    Periodic Instantons in SU(2) Yang-Mills-Higgs Theory

    Get PDF
    The properties of periodic instanton solutions of the classical SU(2) gauge theory with a Higgs doublet field are described analytically at low energies, and found numerically for all energies up to and beyond the sphaleron energy. Interesting new classes of bifurcating complex periodic instanton solutions to the Yang-Mills-Higgs equations are described.Comment: 11 pages, 3 figures (in 5 included eps files), ReVTeX (minor typos corrected and reference added

    The monoclinic crystal structure of α\alpha-RuCl3_3 and the zigzag antiferromagnetic ground state

    Full text link
    The layered honeycomb magnet alpha-RuCl3 has been proposed as a candidate to realize a Kitaev spin model with strongly frustrated, bond-dependent, anisotropic interactions between spin-orbit entangled jeff=1/2 Ru4+ magnetic moments. Here we report a detailed study of the three-dimensional crystal structure using x-ray diffraction on untwinned crystals combined with structural relaxation calculations. We consider several models for the stacking of honeycomb layers and find evidence for a crystal structure with a monoclinic unit cell corresponding to a stacking of layers with a unidirectional in-plane offset, with occasional in-plane sliding stacking faults, in contrast with the currently-assumed trigonal 3-layer stacking periodicity. We report electronic band structure calculations for the monoclinic structure, which find support for the applicability of the jeff=1/2 picture once spin orbit coupling and electron correlations are included. We propose that differences in the magnitude of anisotropic exchange along symmetry inequivalent bonds in the monoclinic cell could provide a natural mechanism to explain the spin gap observed in powder inelastic neutron scattering, in contrast to spin models based on the three-fold symmetric trigonal structure, which predict a gapless spectrum within linear spin wave theory. Our susceptibility measurements on both powders and stacked crystals, as well as neutron powder diffraction show a single magnetic transition at TN ~ 13K. The analysis of the neutron data provides evidence for zigzag magnetic order in the honeycomb layers with an antiferromagnetic stacking between layers. Magnetization measurements on stacked single crystals in pulsed field up to 60T show a single transition around 8T for in-plane fields followed by a gradual, asymptotic approach to magnetization saturation, as characteristic of strongly anisotropic exchange interactions.Comment: 13 pages, 9 figures, published in Physical Review

    Exact Schwarzschild-Like Solution for Yang-Mills Theories

    Get PDF
    Drawing on the parallel between general relativity and Yang-Mills theory we obtain an exact Schwarzschild-like solution for SU(2) gauge fields coupled to a massless scalar field. Pushing the analogy further we speculate that this classical solution to the Yang-Mills equations shows confinement in the same way that particles become confined once they pass the event horizon of the Schwarzschild solution. Two special cases of the solution are considered.Comment: 11 pages LaTe
    corecore