673 research outputs found

    Optimal Economic Growth under Stochastic Environmental Impact: Sensitivity Analysis

    Get PDF
    In this work we present an approach toward the sensitivity analysis of optimal economic growth to a negative environmental impact driven by random natural hazards that damage the production output . We use a simplified model of the GDP whose growth leads to the increase of GHG in the atmosphere provided investment in cleaning is insufficient. The hypothesis of the Poisson probability distribution of the natural hazards is used at the first stage of the research. We apply the standard utility function - the discounted integral consumption and construct an optimal investment policy in production and cleaning together with optimal GDP trajectories. We calibrate the model in the global scale and analyze the sensitivity of obtained optimal growth scenarios with respect to uncertain parameters of the Poisson distribution

    Can Light Signals Travel Faster than c in Nontrivial Vacuua in Flat space-time? Relativistic Causality II

    Full text link
    In this paper we show that the Scharnhorst effect (Vacuum with boundaries or a Casimir type vacuum) cannot be used to generate signals showing measurable faster-than-c speeds. Furthermore, we aim to show that the Scharnhorst effect would violate special relativity, by allowing for a variable speed of light in vacuum, unless one can specify a small invariant length scale. This invariant length scale would be agreed upon by all inertial observers. We hypothesize the approximate scale of the invariant length.Comment: 12 pages no figure

    Axions, their Relatives and Prospects for the Future

    Full text link
    The observation of a non-vanishing rotation of linear polarized laser light after passage through a strong magnetic field by the PVLAS collaboration has renewed the interest in light particles coupled to photons. Axions are a species of such particles that is theoretically well motivated. However, the relation between coupling and mass predicted by standard axion models conflicts with the PVLAS observation. Moreover, light particles with a coupling to photons of the strength required to explain PVLAS face trouble from astrophysical bounds. We discuss models that can avoid these bounds. Finally, we present some ideas to test these possible explanations of PVLAS experimentally.Comment: 11 pages, 4 figures. Contributed to the ``Third Symposium on Large TPCs for Low Energy Rare Event Detection'' in Paris, December 200

    External Fields as a Probe for Fundamental Physics

    Full text link
    Quantum vacuum experiments are becoming a flexible tool for investigating fundamental physics. They are particularly powerful for searching for new light but weakly interacting degrees of freedom and are thus complementary to accelerator-driven experiments. I review recent developments in this field, focusing on optical experiments in strong electromagnetic fields. In order to characterize potential optical signatures, I discuss various low-energy effective actions which parameterize the interaction of particle-physics candidates with optical photons and external electromagnetic fields. Experiments with an electromagnetized quantum vacuum and optical probes do not only have the potential to collect evidence for new physics, but special-purpose setups can also distinguish between different particle-physics scenarios and extract information about underlying microscopic properties.Comment: 12 pages, plenary talk at QFEXT07, Leipzig, September 200

    Research-informed design, management and maintenance of infrastructure slopes: development of a multi-scalar approach

    Get PDF
    The UK’s transport infrastructure is one of the most heavily used in the world. The performance of these networks is critically dependent on the performance of cutting and embankment slopes which make up £20B of the £60B asset value of major highway infrastructure alone. The rail network in particular is also one of the oldest in the world: many of these slopes are suffering high incidents of instability (increasing with time). This paper describes the development of a fundamental understanding of earthwork material and system behaviour, through the systematic integration of research across a range of spatial and temporal scales. Spatially these range from microscopic studies of soil fabric, through elemental materials behaviour to whole slope modelling and monitoring and scaling up to transport networks. Temporally, historical and current weather event sequences are being used to understand and model soil deterioration processes, and climate change scenarios to examine their potential effects on slope performance in futures up to and including the 2080s. The outputs of this research are being mapped onto the different spatial and temporal scales of infrastructure slope asset management to inform the design of new slopes through to changing the way in which investment is made into aging assets. The aim ultimately is to help create a more reliable, cost effective, safer and more resilient transport system

    Dispersive properties of quasi-phase-matched optical parametric amplifiers

    Get PDF
    The dispersive properties of non-degenerate optical parametric amplification in quasi-phase-matched (QPM) nonlinear quadratic crystals with an arbitrary grating profile are theoretically investigated in the no-pump-depletion limit. The spectral group delay curve of the amplifier is shown to be univocally determined by its spectral power gain curve through a Hilbert transform. Such a constraint has important implications on the propagation of spectrally-narrow optical pulses through the amplifier. In particular, it is shown that anomalous transit times, corresponding to superluminal or even negative group velocities, are possible near local minima of the spectral gain curve. A possible experimental observation of such effects using a QPM Lithium-Niobate crystal is suggested.Comment: submitted for publicatio

    Predicting restoration of kidney function during CRRT-free intervals

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Renal failure is common in critically ill patients and frequently requires continuous renal replacement therapy (CRRT). CRRT is discontinued at regular intervals for routine changes of the disposable equipment or for replacing clogged filter membrane assemblies. The present study was conducted to determine if the necessity to continue CRRT could be predicted during the CRRT-free period.</p> <p>Materials and methods</p> <p>In the period from 2003 to 2006, 605 patients were treated with CRRT in our ICU. A total of 222 patients with 448 CRRT-free intervals had complete data sets and were used for analysis. Of the total CRRT-free periods, 225 served as an evaluation group. Twenty-nine parameters with an assumed influence on kidney function were analyzed with regard to their potential to predict the restoration of kidney function during the CRRT-free interval. Using univariate analysis and logistic regression, a prospective index was developed and validated in the remaining 223 CRRT-free periods to establish its prognostic strength.</p> <p>Results</p> <p>Only three parameters showed an independent influence on the restoration of kidney function during CRRT-free intervals: the number of previous CRRT cycles (medians in the two outcome groups: 1 vs. 2), the "Sequential Organ Failure Assessment"-score (means in the two outcome groups: 8.3 vs. 9.2) and urinary output after the cessation of CRRT (medians in two outcome groups: 66 ml/h vs. 10 ml/h). The prognostic index, which was calculated from these three variables, showed a satisfactory potential to predict the kidney function during the CRRT-free intervals; Receiver operating characteristic (ROC) analysis revealed an area under the curve of 0.798.</p> <p>Conclusion</p> <p>Restoration of kidney function during CRRT-free periods can be predicted with an index calculated from three variables. Prospective trials in other hospitals must clarify whether our results are generally transferable to other patient populations.</p
    corecore