726 research outputs found

    Microarray comparative genomic hybridisation analysis of intraocular uveal melanomas identifies distinctive imbalances associated with loss of chromosome 3

    Get PDF
    Defining regions of genomic imbalance can identify genes involved in tumour development. Conventional cytogenetics has identified several nonrandom copy number alterations (CNA) in uveal melanomas (UVM), which include monosomy 3, chromosome 6 abnormalities and gain of 8q. To gain further insight into the CNAs and define the regions involved more precisely we analysed 18 primary UVMs using 1 Mb BAC microarray comparative genomic hybridisation (CGH). Our analysis showed that the most common genomic imbalances were 8q gain (78%), 6p gain (67%) and monosomy 3 (56%). Two distinct CGH profiles could be delineated on the basis of the chromosome 3 status. The most common genetic changes in monosomy 3 tumours, in our study, were gain of 8q11.21–q24.3, 6p25.1–p21.2, 21q21.2–q21.3 and 21q22.13–q22.3 and loss of 1p36.33–p34.3, 1p31.1–p21.2, 6q16.2–q25.3 and 8p23.3–p11.23. In contrast, disomy 3 tumours showed recurrent gains of only 6p25.3–p22.3 and 8q23.2–q24.3. Our approach allowed definition of the smallest overlapping regions of imbalance, which may be important in the development of UVM

    Mutations in Bcl10 are very rare in colorectal cancer

    Get PDF
    Bcl10 is a recently identified gene reported to be involved commonly in human malignancy (Willis et al (1999) Cell 96: 1-20). To investigate whether it is frequently mutated in colorectal cancer we have analysed a series of 132 colorectal cancers and eight colorectal cancer cell lines for mutations in Bcl10. One feature of the Bcl10 gene is that it harbours two polyadenine tracts. These repeating elements in genes can be prone to a high rate of mutation if there is defective mismatch repair. To examine the possibility that Bcl10 may be preferentially mutated in mismatch repair-deficient cancers, 49 of the tumours and cell lines were known to be replication error (RER)-positive and, of these, ten were from individuals harbouring germline mutations in hMLH1 or hMSH2. No pathogenic mutations were detected in the tumours and only one mutation was found in the colorectal cancer cell lines. These results indicate that Bcl10 is unlikely to be involved in the pathways of colorectal carcinogenesis

    CHEK2 variants in susceptibility to breast cancer and evidence of retention of the wild type allele in tumours

    Get PDF
    We have recently shown that the CHEK2*1100delC mutation acts as a low penetrance breast cancer susceptibility allele. To investigate if other CHEK2 variants confer an increased risk of breast cancer, we have screened an affected individual with breast cancer from 68 breast cancer families. Five of these individuals were found to harbour germline variants in CHEK2. Three carried the 1100delC variant (4%). One of these three individuals also carried the missense variant, Arg180His. In the other two individuals, missense variants, Arg117Gly and Arg137Gln, were identified. These two missense variants reside within the Forkhead-associated domain of CHEK2, which is important for the function of the expressed protein. None of these missense variants were present in 300 healthy controls. Microdissected tumours with a germline mutation showed loss of the mutant allele suggesting a mechanism for tumorigenesis other than a loss of the wild type allele. This study provides further evidence that sequence variation in CHEK2 is associated with an increased risk of breast cancer, and implies that tumorigenesis in association with CHEK2 mutations does not involve loss of the wild type allele

    Prognostic significance of folate metabolism polymorphisms for lung cancer

    Get PDF
    Functional nonsynonymous single-nucleotide polymorphisms (nsSNPs) of folate metabolism genes can influence the methylation of tumour suppressor genes, thereby potentially impacting on tumour behaviour. To investigate whether such polymorphisms influence lung cancer survival, we genotyped 14 nsSNPs mapping to methylene-tetrahydrofolate reductase (MTHFR), methionine synthase (MTR), methionine synthase reductase (MTRR); DNA methyltransferase (DNMT2), methylenetetrahydrofolate dehydrogenase (MTHFD1) and methenyltetrahydrofolate synthetase (MTHFS) in 619 Caucasian women with incident disease, 465 with non-small cell (NSCLC) and 154 with small cell lung cancer (SCLC). The most significant association detected was with MTHFS Thr202Ala, with carriers of variant alleles having a worse prognosis (hazard ratio (HR)=1.49; 95% confidence interval: 1.14–1.94). Associations were also detected between overall survival (OS) in SCLC and homozygosity for MTHFR 222Val (HR=1.92; 1.03–3.58) and between OS from NSCLC and MTRR 175Leu carrier status (HR=1.36; 1.06–1.75). While there is evidence that variation in the folate metabolism genes may influence prognosis from lung cancer, current data are insufficiently robust to distinguish individual patient outcome

    Lobular carcinoma in situ of the breast is not caused by constitutional mutations in the E-cadherin gene

    Get PDF
    Lobular carcinoma in situ (LCIS) is an unusual histological pattern of non-invasive neoplastic disease of the breast occurring predominantly in women aged between 40 and 50 years. LCIS is frequently multicentric and bilateral, and there is evidence that it is associated with an elevated familial risk of breast cancer. Although women with LCIS suffer an increased risk of invasive breast disease, this risk is moderate suggesting that LCIS may result from mutation of a gene or genes conferring a high risk of LCIS, but a lower risk of invasive breast cancer. The high frequency of somatic mutations in E-cadherin in LCIS, coupled with recent reports that germline mutations in this gene can predispose to diffuse gastric cancer, raised the possibility that constitutional E-cadherin mutations may confer susceptibility to LCIS. In order to explore this possibility we have examined a series of 65 LCIS patients for germline E-cadherin mutations. Four polymorphisms were detected but no pathogenic mutations were identified. The results indicate that E-cadherin is unlikely to act as a susceptibility gene for LCIS. © 2000 Cancer Research Campaig

    National study of colorectal cancer genetics

    Get PDF
    Approximately, a third of all colorectal cancer (CRC) is due to inherited susceptibility. However, high-risk mutations in APC, the mismatch repair (MMR) genes, MUTYH/MYH, SMAD4, ALK3 and STK11/LKB1 are rare and account for <5% of cases. Much of the remaining variation in genetic risk is likely to be explained by combinations of more common gene variants that modestly increase risk. Reliable identification of such ‘low penetrance' alleles would provide insight into the aetiology of CRC and might highlight potential therapeutic and preventative interventions. In 2003, the National Study of Colorectal Cancer Genetics (NSCCG) was established with the aim of collecting DNA and clinicopathological data from 20 000 CRC cases and a series of spouse/partner controls, thereby creating a unique resource for identifying low-penetrance CRC susceptibility alleles. The National Cancer Research Network (NCRN) adopted NSCCG onto its portfolio of trials and 148 centres in the United Kingdom (UK) are now actively participating. Over 8700 cases and 2185 controls have so far been entered into NSCCG. Our experience in developing NSCCG serves to illustrate how world-class DNA databases for genetic analyses can be rapidly developed in the United Kingdom

    CDX2 mutations do not account for juvenile polyposis or Peutz–Jeghers syndrome and occur infrequently in sporadic colorectal cancers

    Get PDF
    Peutz–Jeghers syndrome (PJS) and juvenile polyposis (JPS) are both characterized by the presence of hamartomatous polyps and increased risk of malignancy in the gastrointestinal tract. Mutations of the LKB1 and SMAD4 genes have been shown recently to cause a number of PJS and JPS cases respectively, but there remains considerable uncharacterized genetic heterogeneity in these syndromes, particularly JPS. The mouse homologue of CDX2 has been shown to give rise to a phenotype which includes hamartomatous-like polyps in the colon and is therefore a good candidate for JPS and PJS cases which are not accounted for by the SMAD4 and LKB1 genes. By analogy with SMAD4CDX2 is also a candidate for somatic mutation in sporadic colorectal cancer. We have screened 37 JPS families/cases without known SMAD4 mutations, 10 Peutz-Jeghers cases without known LKB1 mutations and 49 sporadic colorectal cancers for mutations in CDX2. Although polymorphic variants and rare variants of unlikely significance were detected, no pathogenic CDX2 mutations were found in any case of JPS or PJS, or in any of the sporadic cancers. © 2001 Cancer Research Campaign www.bjcancer.co

    Case–control, kin-cohort and meta-analyses provide no support for STK15 F31I as a low penetrance colorectal cancer allele

    Get PDF
    Recently, homozygosity for T91A single-nucleotide polymorphism (SNP) in the serine/threonine kinase (STK15) gene, which generates the substitution F31I has been proposed to increase the risk of a number of tumours including colorectal cancer (CRC). To further evaluate the relationship between STK15 F31I and risk of CRC, we genotyped 2558 CRC cases and 2680 controls for this polymorphism. We found no evidence that homozygosity for the STK15 31I genotype confers an increased risk of CRC (odds ratio=0.95, 95% confidence interval (CI): 0.74–1.24). We also conducted a kin-cohort analysis to assess risk among first-degree relatives of the CRC cases. The hazard ratio for I/I homozygotes compared to F/F homozygotes was 1.65 (95% CI: 0.39–3.17). A meta-analysis of our case–control data and three previous studies also provided no evidence of an elevated risk of CRC associated with homozygosity. These data provide no support for the hypothesis that sequence variation in STK15 defined by SNP F31I per se confers an elevated risk of CRC

    Genome-wide interaction and pathway-based identification of key regulators in multiple myeloma.

    Get PDF
    Inherited genetic susceptibility to multiple myeloma has been investigated in a number of studies. Although 23 individual risk loci have been identified, much of the genetic heritability remains unknown. Here we carried out genome-wide interaction analyses on two European cohorts accounting for 3,999 cases and 7,266 controls and characterized genetic susceptibility to multiple myeloma with subsequent meta-analysis that discovered 16 unique interacting loci. These risk loci along with previously known variants explain 17% of the heritability in liability scale. The genes associated with the interacting loci were found to be enriched in transforming growth factor beta signaling and circadian rhythm regulation pathways suggesting immunoglobulin trait modulation, TH17 cell differentiation and bone morphogenesis as mechanistic links between the predisposition markers and intrinsic multiple myeloma biology. Further tissue/cell-type enrichment analysis associated the discovered genes with hemic-immune system tissue types and immune-related cell types indicating overall involvement in immune response
    • …
    corecore