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Genome-wide interaction and pathway-based
identification of key regulators in multiple myeloma
Subhayan Chattopadhyay 1,2, Hauke Thomsen1, Pankaj Yadav1, Miguel Inacio da Silva Filho1, Niels Weinhold3,4,

Markus M. Nöthen5,6, Per Hoffman5,6,7, Uta Bertsch3, Stefanie Huhn3, Gareth J. Morgan4,

Hartmut Goldschmidt3,8, Richard Houlston 9,10, Kari Hemminki1,11 & Asta Försti1,11

Inherited genetic susceptibility to multiple myeloma has been investigated in a number of

studies. Although 23 individual risk loci have been identified, much of the genetic heritability

remains unknown. Here we carried out genome-wide interaction analyses on two European

cohorts accounting for 3,999 cases and 7,266 controls and characterized genetic suscept-

ibility to multiple myeloma with subsequent meta-analysis that discovered 16 unique inter-

acting loci. These risk loci along with previously known variants explain 17% of the heritability

in liability scale. The genes associated with the interacting loci were found to be enriched in

transforming growth factor beta signaling and circadian rhythm regulation pathways sug-

gesting immunoglobulin trait modulation, TH17 cell differentiation and bone morphogenesis

as mechanistic links between the predisposition markers and intrinsic multiple myeloma

biology. Further tissue/cell-type enrichment analysis associated the discovered genes with

hemic-immune system tissue types and immune-related cell types indicating overall invol-

vement in immune response.
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Multiple myeloma is the second most prevalent hemato-
logical malignancy with almost 31,000 estimated new
diagnoses in the United States in 20181. Multiple

myeloma, a B-cell neoplasm, is characterized by proliferation of
clonal plasma cells in bone marrow. Familial aggregation of
multiple myeloma suggests predisposition due to inherited
genetic variation2,3. Susceptibility to multiple myeloma and its
genetic relationship with the related diseases, monoclonal gam-
mopathy of unknown significance (MGUS), and amyloid light
chain (AL) amyloidosis, have lately been established through
genome-wide association studies (GWASs)4–6. Although a total
of 23 risk loci have been discovered predisposing to multiple
myeloma, they are estimated to explain only about 16% of the
heritability5,7. Moreover, genetic heterogeneity among multiple
myeloma tumors bears complication in characterization of
genetic susceptibility to multiple myeloma and in understanding
of clinical consequences8,9.

In addition to the linear association analysis, we have recently
identified several inherited risk loci predisposing to MGUS
through genome-wide genetic interaction10. To gain ample
insight into genetic predisposition of multiple myeloma, we
performed here the first genome-wide interaction study using two
patient cohorts comprising a total of 3999 cases and 7266 con-
trols. We extended the investigation with a subsequent meta-
analysis of the two cohorts to increase the statistical power of
detection. We also examined enrichment of expression of the
identified genes in several tissue and cell types. Additionally, we
performed gene set enrichment and pathway analyses to confer a
biological understanding to our investigation. Collectively, our
analyses support the hypothesis that genetic interaction plays a
crucial role in multiple myeloma predisposition. The sentinel
genes thus discovered are often expressed in tissues and cell
lineages of hematopoietic system responsible for immune-
modulation and they also influence inherited susceptibility to
multiple myeloma through regulation of circadian rhythm and
Smad-dependent TGFβ pathways.

Results
Interacting chromosomal loci. Two quality controlled sets of
genotyped data consisting 2282 cases and 5197 controls from the
UK and 1717 cases and 2069 controls from Germany were sub-
jected to pairwise interaction analysis accounting for 0.43 million
and 0.52 million single-nucleotide polymorphisms (SNPs),
respectively. Meta-analysis of associative linear interaction on
transformed correlation statistics rendered 16 unique SNP pairs
belonging to 16 exclusive chromosomal regions reaching genome-
wide threshold of 5.0 × 10−10 (Fig. 1 and Supplementary Data 1).

The strongest meta-analyzed signal was provided by an
interaction between rs7048811 at 9q21.31 (associated gene
GNAQ) and rs7204305 at 16q24.1 (IRF8) (ORMeta= 1.22; 95%
CI= 1.12–1.32; P= 1.3 × 10–10, Supplementary Data 1). This
interaction was consistent in both cohorts with a conservative
level of significance (UK cohort: OR= 1.20, 95% CI= 1.08–1.33,
P= 7.0 × 10–06; German cohort: OR= 1.24, 95% CI= 1.09–1.41,
P= 7.6 × 10–06). The highest statistically significant OR was
observed for the second most strong interaction signal between
rs2167453 at 11p15.2 (PDE3B) and rs2734459 at 19q13.31
(ZNF229) (ORMeta= 1.52, 95% CI= 1.33–1.73, P= 1.3 × 10–10).

Biological inference of the interacting chromosomal loci. Many
of the risk SNPs identified, although showing promising geno-
typic interactions, are mapped to non-coding regions of the
genome and possibly contribute to multiple myeloma etiology by
affecting gene expression11. In order to gain biological under-
standing of the newly identified interacting risk loci, we

interrogated expression quantitative trait locus (eQTL) data
generated on malignant plasma cells obtained from patients of the
German multiple myeloma trials. Strongest eQTL signals were
observed by rs2167453 at 11p15.2 for cytochrome P450, family 2,
subfamily R, polypeptide 1 (CYP2R1) and by rs923934 at 3q29 for
family with sequence similarity 43, member A (FAM43A), both
withPeQTL ¼ 4:40´ 10�5 (Table 1). Also the interacting partners
of these SNPs served as eQTLs with a moderate signal, rs2734459
for CLASRP, ZNF224, and APOE and rs13201167 for AKAP12
and C6orf211.

Summary-data-based Mendelian randomization (SMR) was
employed to analyze pleiotropic effects between the GWAS signal
and the cis-eQTL for genes residing within 1Mb window of the
interacting SNP loci to identify causal relationship between
variants and disease phenotype via instrumentation of gene
regulation12. The strongest pleiotropic signal was observed at
4p15.33 by rs17362130 for RAS oncogene family member 28,
RAB28 PSMR ¼ 4:84´ 10�3ð Þ and at 6p25.2 by rs6918808 for
receptor (TNFRSF)-interacting serine/threonine kinase 1, RIPK1
(PSMR ¼ 5:04 ´ 10�3, Table 1 and Fig. 2), respectively. Oncogenic
ras family members are frequently mutated in multiple
myeloma13,14. RIPK1 interacts with RIPK3 to activate the
necrosome complex that is responsible for instigation of several
death receptors, which can induce apoptosis, necroptosis, or cell
proliferation15. rs17362130 is also an eQTL for NKX3–2 with
a moderate signal PeQTL ¼ 2:11 ´ 10�3

� �
and rs6918808 for

SERPINB9. NKX3–2 is involved in skeletal development15.
SERPINB9 is a known inhibitor of granzyme and may mediate
tumor immune evasion by apoptosis inhibition16,17.

We investigated shared biological and information driven
connections between the genes annotated to the variants by
creating a genetic network. Unique annotations from the 16
interaction-identified variants along with the SMR identified
causally related genes were subjected to network enrichment and
a single batch of first order interacting genes based on data-mined
enrichment index were additionally added to increase confidence
of network associations (Fig. 3).

We applied Data-Driven Expression-Prioritized Integration for
Complex Traits (DEPICT) for in silico analyses of enrichment of
expression of genes annotated to the associated loci in tissues and
cell types. To this end interaction-identified SNPs were clustered
to 12 unique loci and were tested for significant excess expression
of the corresponding genes in 209 Medical Subject Heading
(MeSH) annotations against 37,427 microarrays procured in
backend. Twenty-seven tissue or cell type annotations were
discovered significant at a suggestive level (P < 0.05); 16 of them
belonged to the hemic and immune system, two to the
musculoskeletal system and one to the stomatognathic system
(Fig. 4a), as well as six cell types related to hematopoietic system
(Fig. 4b and Supplementary Data 2).

Biological inference of the GWAS-identified loci. Next, we
investigated functional relationships among the previous GWAS-
identified loci using the pathway analysis tool PASCAL with the
bottom-up approach. To avoid possible complications arising
from statistical convergence of the test statistic, we used sum of
chi-square statistic to test for functional association against
pathways extracted from REACTOME, KEGG, and BIOCARTA
libraries (Supplementary Data 3). A total of 12 enriched pathways
reached a global threshold of 0.0025 for the combined P-value.
Three of the pathways, thus, detected were signaling cascades
reflecting the activation status of the SMAD family proteins, as
signal transducers for receptors of the cytokine TGFβ repre-
sented by SMAD2, SMAD3, SMAD4 heterotrimer regulates
transcription, Pcombined ¼ 5:70´ 10�3; TGFβ receptor signaling
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activates SMADs, Pcombined ¼ 8:60 ´ 10�3 and transcriptional
activity of SMAD2, SMAD3, SMAD4 heterotrimer,
Pcombined ¼ 1:49´ 10�2. Additionally, two pathways related to the
regulation of circadian rhythms mediated by two nuclear receptor
proteins retinoic acid receptor-related orphan receptor A (RORA)
and Rev-ErbA were identified: Circadian repression of expression
by REV-ERBA, Pcombined ¼ 5:52 ´ 10�4 (Table 2) and RORA
activates circadian expression. Pcombined ¼ 2:13 ´ 10�3. Also,
modulation of ALK receptor tyrosine kinase activity was indicated
with ALK pathway, Pcombined ¼ 2:82´ 10�3.

Heritability estimation. The previously identified 23 multiple
myeloma risk SNPs were shown to account for 15.7% of the
GWAS heritability, a relatively small fraction of the estimated
15.6% ( ± 4.7) net heritability explained by all common
SNPs5,7,18. The identified interacting loci explain an additional
1.3% of the GWAS heritability in the UK cohort (1.5% in the
German cohort) in the liability scale, which brings the collec-
tively explained GWAS heritability to a modest 17% ( ± 2.4).
However, as the heritability estimates are based on individual
SNP associations and do not take into account the interaction
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Fig. 1 Interaction analysis identifies 16 unique risk loci pairs. Circos plot of genome-wide association and significant interaction results for the identified
paired risk loci. The two outer most panels display results from genome-wide association study on a Manhattan plot for autosomal variants on a negative
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term, the scope of interaction-identified heritability remains
unanswered.

Discussion
We have performed the first genome-wide interaction study on
multiple myeloma to date. We discovered 16 unique multiple
myeloma risk locus pairs. Several of the discovered SNPs depicted
eQTL effects for nearby genes and they were implicated in the
networks and pathways relevant for multiple myeloma biology.
We also demonstrated that genes annotated to the loci are highly
expressed in tissues and cells of the hemic-immune system.

Interferon regulatory factor 8 (IRF8) together with G protein
subunit alpha Q (GNAQ) were discovered to be the paired risk
loci with highest statistical significance. IRF8 is reported to be a
risk locus for immunoglobulin trait modulation, whereas GNAQ
is a guanine nucleotide-binding protein that regulates B-cell
development and survival19,20. IRF8 has many functions in reg-
ulating innate immunity and immune cell development, including
B- and T-cells, dendritic cells, and myeloid cells21. In early
development, IRF8 and IRF4 function redundantly to regulate
transition of pre-B-cells to maturing B-cells. In the germinal
center development, the roles of these IRFs are complementary:
IRF8 directs early centroblast development, which is taken over
by IRF4 as centrocytes mature into plasma cells. IRF8 induces
activation-induced cytidine deaminase, which is a key enzyme
catalyzing somatic hypermutations of plasma cells21. Similar to
IRF4, IRF8 transcriptional activity in multiple myeloma may also
be related to differentiation of T helper (TH) 17 cells, which have
a regulatory effect on bone morphogenesis-related onset of
multiple myeloma22. IRF8 has been reported to act as an intrinsic
transcriptional inhibitor of TH17 cells, at least partly through its
physical interaction with retinoic acid receptor-related orphan
receptor RORγt23. As a confirmation of this signal, we identified
enrichment of two circadian rhythm pathways regulated by two
nuclear receptors, RORA and Rev-ErbA, which are crucial for the
development of TH17 cells24. These findings together with our

previous identification of rs4487645 at 7p15.3, as a modulator of
IRF4 binding at an enhancer element of the c-Myc-interacting
gene CDCA7L in multiple myeloma25–27, support the role of the
genetic variants in IRF8 and its interacting partner in GNAQ in
multiple myeloma susceptibility.

Another signaling cascade affecting immunoglobulin trait
modulation, TH17 cell differentiation, and bone morphogenesis is
the TGFβ pathway28, which was represented by three enriched
pathways in our analysis. In multiple myeloma, enhanced bone
resorption releases and activates TGFβ, which is a potent inhi-
bitor of osteoblast differentiation and mineralization29. Our
interaction analysis identified rs2834882 annotated to runt related
transcription factor 1 (RUNX1) in interaction with rs2860107 at
zinc finger CCHC-type containing 6 (ZCCHC6, alias TUT7).
RUNX family transcriptional activities have been linked to TGFβ-
induced IgA class switching, which is involved in multiple mye-
loma pathogenesis19,30. RUNX proteins also play a major role in
cell differentiation, and RUNX1 is specifically regulating hema-
topoiesis31. Germline mutations in RUNX1 cause familial platelet
disorder with propensity to myeloid malignancies and somatic
loss of RUNX1 function is related to several hematologic
malignancies29,32. RUNX transcription factors are integral com-
ponents of signaling pathways enforced by TGFβ family members
including bone morphogenic proteins (BMPs). RUNX1 and
RUNX2 are known modulators of BMP-2/7/9-induced osteoblast
differentiation. RUNX1 along with RUNX2 is often found co-
expressed in skeletal elements that regulate expression of BMP-2
and BMP-9.33. RUNX2 regulatory activity in osteoblast differ-
entiation is also regulated by transcription factor NKX3–2, whose
expression was modulated by the sentinel SNP rs17362130
(Table 1)16. Additionally, ZCCHC11 and ZCCHC6 TUTase
inhibitors are being investigated as potential agents for targeted
therapy34.

Contextually in multiple myeloma, TGFβ induces differentia-
tion arrest in osteoblasts, increases osteoclastogenesis, promotes
angiogenesis, and suppresses host immunity in bone marrow
microenvironment to create the so called multiple myeloma

Table 1 Genome-wide association study (GWAS) summary-data-based Mendelian randomization (SMR)

Probe Gene name Gene ID Single- nucleotide
polymorphism
(SNP) ID

eQTL
P-value

GWAS
P-value

SMR
P-value

9364_at RAB28, member RAS oncogene family RAB28 rs17362130 1.14E-03 3.68E-05 4.84E-03
8737_at Receptor (TNFRSF)-interacting serine-threonine kinase 1 RIP1 rs6918808 1.23E-03 4.01E-05 5.04E-03
7289_at Tubby like protein 3 TULP3 rs2238087 1.14E-03 2.58E-04 1.27E-02
808_at Calmodulin 3 (phosphorylase kinase, delta) CALM3 rs4802363 1.76E-03 1.99E-03 1.28E-02
11133_at Kaptin (actin binding protein) KPTN rs4802363 1.98E-03 2.91E-03 1.30E-02
8605_at Phospholipase A2, group IVC (cytosolic, calcium-

independent)
PLA2G4C rs4802363 1.72E-03 4.62E-03 1.33E-02

57820_at Cyclin B1 interacting protein 1, E3 ubiquitin protein ligase CCNB1lP1 rs10130942 1.41E-03 3.98E-03 1.86E-02
10082_at Glypican 6 GPC6 rs17181808 1.06E-03 6.41E-04 1.86E-02
1690_at coagulation factor C homolog, cochlin (Limulus

polyphemus)
COCH rs12436395 3.52E-04 1.88E-02 2.03E-02

120227_at Cytochrome P450, family 2, subfamily R, polypeptide 1 CYP2R1 rs2167453 4.40E-05 2.56E-02 2.10E-02
579_at NK3 homeobox 2 NKX3–2 rs17362130 2.11E-03 1.18E-03 2.72E-02
80759_at KH homology domain containing 1 KHDC1 rs4706511 1.01E-03 5.49E-03 3.47E-02
10553_at HIV-1 Tat interactive protein 2, 30 kDa HTATIP2 rs10766743 1.85E-03 2.11E-03 3.60E-02
79624_at Chromosome 6 open reading frame 211 C6orf211 rs13201167 4.40E-04 2.47E-03 3.65E-02
160897_at G protein-coupled receptor 180 GPR180 rs17181808 4.40E-04 5.04E-03 3.66E-02
5272_at Serpin peptidase inhibitor, clade B (ovalbumin), member 9 SERPINB9 rs6918808 1.01E-03 3.04E-03 3.80E-02
23483_at TDP-glucose 4,6-dehydratase TGDS rs17181808 4.84E-04 6.32E-03 3.82E-02
440145_at Mitotic spindle organizing protein 1 MZT1 rs17089906 2.64E-04 9.85E-03 4.20E-02
9590_at A kinase (PRKA) anchor protein 12 AKAP12 rs13201167 2.16E-03 3.63E-03 4.27E-02
688_at Kruppel-like factor 5 (intestinal) KLF5 rs17089906 1.76E-04 2.01E-02 4.54E-02
7767_at Zinc finger protein 224 ZNF224 rs2734459 7.04E-04 3.59E-03 4.66E-02
348_at Apolipoprotein E APOE rs2734459 1.23E-03 5.19E-03 5.55E-02
81029_at Wingless-type MMTV integration site family, member 5B WNT5B rs2238087 1.98E-03 6.45E-03 5.65E-02
404550_at Chromosome 16 open reading frame 74 C16orf74 rs7204305 1.98E-03 6.74E-03 5.67E-02
11129_at CLK4-associating serine/arginine rich protein CLASRP rs2734459 2.64E-04 1.32E-02 8.43E-02
131583_at Family with sequence similarity 43, member A FAM43A rs923934 4.40E-05 1.90E-02 8.89E-02
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niche, thus enhancing multiple myeloma cell growth and survi-
val29. TGFβ-activated transcription factors, SMADs also interact
with chromatin binding proteins HDAC1 and HDAC2. HDAC1
is a class I histone deacetylase gene and multiple myeloma
patients with high protein levels of HDAC1 were shown to have
poor progression-free and overall survival35. Moreover, inhibition
of HDAC1 is demonstrated to induce multiple myeloma cell
death36. We noted a significant interaction between a class II
HDAC family member, HDAC9 and neural cell adhesion mole-
cule 2, NCAM2. Deregulation of HDAC9 in cells of lymphoid
lineage is believed to induce B-cell lymphoproliferative disorders
including Waldenström macroglobulinemia and is associated
with general poor prognosis in cancer37,38. HDAC9 is also
hypothesized to be responsible for lymphomagenesis by

regulating growth and survival related pathways and by mod-
ulating of BCL6 and p53 tumor suppressor activity38. In germinal
cells, it is shown to be co-expressed with BCL6, a therapeutic
target for multiple myeloma39. Controlled cell cycle is critical for
normal cellular growth, and its deregulation may possibly sti-
mulate carcinogenesis.

HDACs are also shown to have role in transcriptional activity
of NKX3–2, one of the eQTL targets of our study. It has been
shown that BMP and SMAD signaling modulates the activity of
NKX3–2 in a BMP-dependent manner by promoting NKX3–2
binding with SMAD1/4 and HDAC/SIN3A corepressor com-
plex40. As HDAC inhibitors in general pose a vital role in cell
cycle arrest induction and activation of intrinsic apoptotic
mechanism, our observation leads to speculation that a common
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variation in 7p21.1 may predispose to multiple myeloma
progression.

The recent meta-analyses have pointed out apoptosis and
autophagy, B-cell and plasma cell development, cell cycle reg-
ulation and genomic stability, chromatin remodeling and
immunoglobulin production as the main pathways deregulated
by the identified multiple myeloma susceptibility loci5,7. We
identified causally related genes implicated in apoptosis, such as
RIPK1 and SERPINB9. Among the interacting loci we identified
genes involved in B-cell development and immunoglobulin pro-
duction, such as GNAQ and IRF8 and the TGFβ pathway and
genes modifying the chromatin state, such as HDAC9. As TGFβ
signaling is modified by ubiquitination and deubiquitination41,
our study also support the importance of ubiquitin-proteasome
signaling in multiple myeloma, which was highlighted by the
meta-analysis together with the mechanistic target of rapamycin
(mTOR) signaling as targets for already approved drugs in
multiple myeloma7.

In conclusion, our findings provide further evidence that
multiple myeloma is a genetically heterogeneous disease with
inherited genetic susceptibility loci contributing excess risk via
regulation of an assortment of regulatory networks and pathways.
The two major signaling cascades we identified, TGFβ signaling
through its signal transducers SMADs and circadian rhythm
regulation by RORA and Rev-ErbA, integrate immunoglobulin
trait modulation, TH17 cell differentiation, and bone morpho-
genesis, and may provide a mechanistic link between the pre-
disposition markers and intrinsic multiple myeloma biology.

Methods
Ethics. Patient samples and relevant clinico-pathological information was obtained
conditional on written informed consent and was subject to approval of corre-
sponding ethical review boards at respective study centers in accordance with the
tenets of Declaration of Helsinki including Myeloma-IX trial by the Medical
Research Council (MRC) Leukemia Data Monitoring and Ethics committee
(MREC 02/8/95, ISRCTN68454111), the Myeloma-XI trial by the Oxfordshire
Research Ethics Committee (MREC 17/09/09, ISRCTN49407852) and Ethical
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Commission of medical faculty, University of Heidelberg (229/2003, S-337/2009,
AFmu-119/2010).

Genome-wide association studies. Diagnosis of multiple myeloma (ICD-10
C90.0) adhered to the guidelines established by World Health Organization.
Samples retrieved from all subjects were either before treatment or at presentation.

The UK GWAS5 consisted of 2282 cases (1755 male (post quality control (QC))
recruited through the UK MRC Myeloma-IX and Myeloma-XI trials
(ISRCTN68454111: Myeloma- X http://www.isrctn.com/search?
q=ISRCTN68454111 and ISRCTN49407852: Myeloma- XI http://www.isrctn.com/
search?q=ISRCTN49407852). DNA was extracted from EDTA-venous blood
samples (90% before chemotherapy) and genotyped using Illumina Human
OmniExpress-12 v1.0 arrays (Illumina). Controls were recruited from publicly
accessible data generated by the Welcome Trust Case Control Consortium
(WTCCC) from the 1958 Birth Cohort (58C; also known as the National Child
Development Study) and National Blood Service. The control population
comprised of 5197 individuals (2628 male (post QC)). Genotyping of these controls
was conducted using Illumina Human 1–2 M-Duo Custom_v1 Array chips (www.
wtccc.org.uk).

The German GWAS5 comprised 1717 cases (981 male (post QC); mean age at
diagnosis: 59 years). The cases were ascertained by the German-Speaking Multiple
Myeloma Multicenter Study Group (GMMG) coordinated by the University Clinic,
Heidelberg (ISRCTN06413384: GMMG-HD3 http://www.isrctn.com/search?
q=ISRCTN06413384; ISRCTN64455289: GMMG-HD4 http://www.isrctn.com/
search?q=ISRCTN64455289; and ISRCTN05745813: GMMG-MM5 http://www.

isrctn.com/search?q=ISRCTN05745813). DNA was prepared from EDTA-venous
blood or CD-138-negative bone marrow cells ( < 1% tumor contamination).
Genotyping of these samples was performed using Illumina Human OmniExpress-
12 v1.0 arrays (Illumina). For controls, we used genotype data on 2107 healthy
individuals, enrolled into the Heinz Nixdorf Recall (HNR) study genotyped using
either Illumina HumanOmni1-Quad_v1 or OmniExpress-12 v1.0 arrays. Out of
the whole recruited control population, 2069 (1028 male) remained after QC.

Analysis of GWAS. Quality control of the GWAS data was performed according
to predetermined benchmarks already published5. In summary, inclusion of
samples was initially liable to successful genotyping of � 95% of the SNPs.
Duplicates, first-degree relatives, and closely related individuals were removed with
an identity-based-test (IBS) score� 0:80. Genetic heterogeneity was assessed with
principal component analysis using dissimilarity measure calculated with our SNP
panel and genome-wide IBS distances in reference to the HapMap samples. In each
of the samples, SNPs having a minor allele frequency <0:01 and call rate of <95%
were filtered out. SNPs were also excluded subject to departure from
Hardy–Weinberg equilibrium at P<1 ´ 10�5 in controls.

Genome-wide interaction study. Analyses were primarily undertaken using
PLINK (v1.09), CASSI (v3), METAINTER, and R (v3.4.0) software. The interaction
between each SNP pair and the risk of multiple myeloma was assessed with
Pearsonian product moment correlation coefficient-based test inspired by Wellek-

Table 2 Pathway enrichment analysis with PASCAL detects 12 putative pathways related to multiple myeloma. Combined
P-values are obtained with Brown’s method. PX denotes P-value obtained from interaction test of set X

Database Pathway PGer PUK PMeta PCombined

REACTOME Circadian repression of expression by REV-ERBA 3.50E-04 1.45E-01 4.16E-03 5.52E-04
APOBEC3G mediated resistance to HIV infection 5.79E-02 1.74E-03 2.09E-03 1.02E-03
RORA activates circadian expression 1.24E-03 1.83E-01 1.20E-02 2.13E-03
Deposition of new CENP-A containing nucleosomes as the centromere 7.00E-02 7.49E-03 3.82E-03 4.48E-03
SMAD2 SMAD3 SMAD4 heterotrimer regulates transcription 8.83E-02 7.81E-03 1.88E-02 5.70E-03
TGFβ receptor signaling activates SMADs 1.73E-02 6.39E-02 4.38E-03 8.60E-03
GABAA receptor activation 2.36E-02 6.27E-02 1.62E-02 1.11E-02
Iron uptake and transport 4.84E-02 4.20E-02 8.91E-03 1.46E-02
Transcriptional activity of SMAD2 SMAD3 SMAD4 heterotrimer 9.53E-02 2.18E-02 4.15E-02 1.49E-02
Purine salvage 8.82E-02 2.51E-02 3.71E-02 1.57E-02
Apoptosis induced DNA fragmentation 1.76E-02 1.29E-01 2.32E-02 1.60E-02

BIOCARTA ALK pathway 9.49E-03 3.28E-02 3.12E-02 2.82E-03
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Ziegler statistics given by the formula42:

TWZcase=control
¼ ðrA � rN Þ2

Var rAð Þ þ VarðrN Þ

Where r is pearsonian correlation coefficient statistics defined by Wellek and
Ziegler43. rA and rN, respectively, represent the statistics calculated among cases
and controls separately. To this end, we used CASSI software. Genomic resolution
of the whole interaction test space was deflated with default predefined control
option where all the variants having weaker signal (single marker
associationP>1:0 ´ 10�3) were excluded10. We performed the interaction test in
the German and UK cohorts separately and meta-analyzed the results to strengthen
the signals from co-occurring interacting pairs. To conduct meta-analysis
METAINTER software was employed assuming a fixed effects model. Gamma
approximated negative sum of log transformed interaction statistics from each
of the two sets were considered as the test statistic for each variant pair and was
tested with a weighted Chi-square statistic with four degrees of freedom44. Odds
ratio and associated 95% confidence intervals were calculated with unconditional
logistic regression with independence assumption among each component of SNP
pairs.

Expression quantitative trait loci analysis. Investigation of true regulatory effects
of the SNPs identified with the interaction study was undertaken by analyzing
eQTL data obtained from malignant plasma cells of 665 multiple myeloma patients
(389 male) enrolled in the German multiple myeloma trials conducted in Hei-
delberg University clinic. CD-138 purified plasma cells were used for gene
expression profiling using Affymetrix U133 2.0 plus arrays. The expression data
was submitted to Gene Expression Omnibus (E-MTAB-2299). All analyses were
undertaken with R software. GC-RMA was used to normalize the expression data
and genes with transformed log2 expression < 3.5 in at least 95% of the samples
were excluded from further consideration. With exclusive consideration of auto-
somal genes, 9722 genes remained after QC. We investigated the correlative rela-
tionship between the identified individual risk SNPs within 1 Mb window (cis-
eQTL analysis), which narrowed the candidates to a set of 239 genes. A Holm-
Sidák corrected level of significance for discovery was determined at <0:0002 i.e.,

1� ð1� 0:05Þ1=239
h i

on 239 probes corresponding to all the variants. Robust

regression on a transformed Huber function was employed to model the qualitative
traits as it warrants higher detection power in moderately contaminated sample45.
To avoid singularity of the argument space, variants in high linkage disequilibrium
were discarded from consideration.

To extend the investigation of relation between SNP genotype and expression
levels of genes and to identify causal candidates rather than mere associative
pairings, we adapted SMR analysis as per Zhu et al.12. In summary, if we nominate
effect size of a differentially expressed gene X on coherence of a phenotype Y to be
βXY and consider the SNP genotypes to be the instrumental variable actively
regulating both gene expression and the phenotype, then we can linearly estimate
βXY by comparative effect-sizes.

β̂XY ¼ β̂ZY
β̂ZX

Where β̂ZY is the estimated effect size of genetic factor on the phenotype, which is

assessed as GWAS effect size and β̂ZX is that of the genetic factor of the expression
levels of the genes, i.e., the eQTL effect size. We need not distinguish pleiotropic
effect from high linkage co-occurrence since the SNPs in linkage disequilibrium
demonstrated equal effect size. Thus, reliability of causal genes was tested with the
approximated SMR statistic against χ21.

Network enrichment. A protein–protein interaction confidence network was
formulated with STRING (v10.5, 04/18/2018). Interactions between two proteins
were calculated based on the likelihood confidence of an edge between the two
nodes and was transposed to a scale of 0 to 1 (1 representing high confidence). We
built our network with the genes annotated by the interaction-discovered SNPs and
eQTL analysis; in addition to that, first batch of first-degree predicted interactive
nodes were included given a confidence score > 0.99. Erroneous discovery was
restricted at 10%, which rendered a protein–protein interaction network index P <
0.0054 (observed number of interactions were tested against expected number of
interactions with chi-square statistic with one degree of freedom).

Pathway enrichment. Initial in silico pathway enrichment was performed with the
PASCAL tool interrogating the GWAS obtained summary statistics46. To create
mapping of genes and single entity gene-fusions with PASCAL, we considered all
genes within 20 kb upstream and downstream to an index SNP and fused all the
corresponding/flanking genes together when the genes were found affecting same
pathway(s). Sum of chi-square statistics with individual one degree of freedom was
computed by summing over association statistics corresponding to each pathway.
Enrichment scores of individual pathways were subsequently obtained by a test

assuming chi-square distribution with degrees of freedom equal to the cardinality
of fused gene sets.

Tissue and cell type enrichment. DEPICT was employed to analyze tissue and
cell type enrichment that predicts differential regulation of the selected loci on any
of the Medical Subject Heading (MeSH) annotations47. To this end, 209 such
annotations were tested for 37,427 inbuilt backend human microarrays on the
Affymetrix HGU133a2.0 array platform. The tissue/cell type enrichment is thus
performed on the normalized expression matrix after subjecting it to user selected
dimension reduction criteria. SNP pairs discovered with interaction test repre-
sented 12 unique mapped regions against which the enrichment was tested, hence
we tested against a conservative threshold of significance at negative log trans-
formed P-value of 2.37 correcting for multiple testing, which retains the false
discovery rate at < 5%48.

Heritability analysis. As hypothesized by earlier studies, heritability estimates of
complex diseases with polygenic origin are more robust with lifetime risk com-
pared to population prevalence49. Following this notion, lifetime risk of multiple
myeloma was assumed (0.007 for UK and 0.006 for German population; https://
www.cancerresearchuk.org/health-professional/cancer-statistics/statistics-by-
cancer-type/myeloma; https://www.krebsdaten.de/Krebs/EN/Home/
homepage_node.html) to ascertain heritability of multiple myeloma explained by
the risk SNPs discovered in the two different cohorts separately. Principal com-
ponents were included to adjust for inflation as covariates. Genome-wide Complex
Trait Analysis was used to estimate the genetic variance ascribable to the identified
loci at a liability scale50,51.

Reporting summary. Further information on experimental design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
SNP genotyping data that support the findings of this study have been deposited in Gene
Expression Omnibus with accession codes GSE21349, GSE19784, and GSE15695; in the
European Genome-phenome Archive (EGA) with accession code EGAS00000000001;
and in the database of Genotypes and Phenotypes (dbGaP) with accession code
phs000207.v1.p1. Expression data that support the findings of this study have been
deposited in EMBL-EBI with accession code E-MTAB-2299. The remaining data are
contained within the paper and Supplementary Data or are available from the author
upon request.
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